91porn邀请码 超等数据中心KVM云平台的虚构麇集缔造
oumeiseqing 首页 97ai蜜桃网 97ai蜜桃小说 97ai蜜桃.com xiao77论坛 xiao77文学 xiao77图片
  • 首页
  • 97ai蜜桃网
  • 97ai蜜桃小说
  • 97ai蜜桃.com
  • xiao77论坛
  • xiao77文学
  • xiao77图片
  • 91porn邀请码 超等数据中心KVM云平台的虚构麇集缔造
    发布日期:2024-07-22 22:21    点击次数:143

    91porn邀请码 超等数据中心KVM云平台的虚构麇集缔造

    Linux常用的基本高唱91porn邀请码

    导言:

    在Linux操作系统中,掌捏常用的基本高唱对于系统管束和日常操作至关要害。本文将详细先容Linux环境下最常用的高唱,内容分为六个部分,每个部分齐将对一类高唱进行深远训诫,包括其用法、示例以及扎眼事项。但愿通过这篇著述,读者未必更全面地了解Linux高唱的使用,提高在Linux环境下的责任效率。

    一、文献操作高唱

    在Linux系统中,对文献的操作是最基本的高唱之一。

    1. 概述:文献操作高唱包括创建、删除、搜检、剪辑文献等。

    2. 常用的文献操作高唱:

    (1)创建文献:使用touch高唱不错创建一个空文献,举例“touch myfile.txt”。

    (2)删除文献:使用rm高唱不错删除文献,举例“rm myfile.txt”。

    (3)搜检文献内容:使用cat、less、more等高唱不错搜检文献内容。其中,cat高唱不错高慢通盘文献内容,举例“cat myfile.txt”。

    (4)剪辑文献:使用vim、nano等文本剪辑器进行文献的剪辑。举例,使用vim高唱翻开并剪辑文献:“vim myfile.txt”。

    3. 扎眼事项:在使用文献操作高唱时,需要扎眼文献的权限和旅途问题,幸免误删或误改要害文献。

    二、目次操作高唱

    目次操作是Linux系统中的另一类基本高唱。

    1. 概述:目次操作包括创建目次、删除目次、切换目次等。

    2. 常用的目次操作高唱:

    (1)创建目次:使用mkdir高唱不错创建新目次,举例“mkdir mydir”。

    (2)删除目次:使用rmdir高唱不错删除空目次,使用rm -r高唱不错递归删除目次过火内容。

    (3)切换目次:使用cd高唱不错切换刻下责任目次,举例“cd /path/to/directory”。

    3. 本体应用:通过目次操作高唱,咱们不错肤浅地管束文献和目次结构,提高文献管束效率。

    三、权限管束高唱

    在Linux系统中,权限管束是确保系统安全的要害妙技。

    1. 概述:权限管束包括用户管束、组管束、权限缔造等。

    2. 常用的权限管束高唱:

    (1)用户管束:使用useradd、userdel等高唱进行用户管束。

    (2)组管束:使用groupadd、groupdel等高唱进行组管束。

    (3)权限缔造:使用chmod高唱不错缔造文献和目次的权限。

    3. 扎眼事项:在进行权限管束时,需要严慎操作,幸免误改要害文献或目次的权限,影响系统安全。

    四、麇集设立高唱

    在Linux系统中,麇集设立是必不可少的一部分。

    1. 概述:麇集设立包括IP地址设立、端口管束、麇集办事等。

    2. 常用的麇集设立高唱:

    (1)ifconfig(已毁掉,使用ip高唱替代):用于搜检和设立麇集接口。

    (2)netstat:用于搜检麇集状态。

    (3)ssh:用于良友登录和管束办事器。

    (4)service或systemctl:用于管束办事。

    3. 本体应用:通过麇集设立高唱,咱们不错肤浅地设立麇集参数,管束麇集办事,实现良友看望和管束。

    五、系统监控高唱

    在Linux系统中,系统监控是了解系统运行情状的要害妙技。

    频年来,收获于方法学的首要跨越和从分子到通盘大脑多档次的数字数据集成及建模,脑科学酌量无疑已迈入一个新时期。在这一布景下,神经科学与期间、磋磨的交叉范围已取得要害进展。新兴的大脑科学整合了高质地的酌量、多档次数据的集成、跨学科的大限度合作文化,同期促进了科研效率的应用迁徙。就如欧洲东说念主脑磋磨(HBP)所提倡的那样,选定系统化的方法对于搪塞改日十年内的医学与期间挑战至关要害。

    本文旨在为改日十年的数字大脑酌量发展一套新见地,并与庸碌的酌量社区伸开商量,寻找共鸣点,以此确立科学的共同方针。同期,提供一个科学框架,守旧刻下及改日的EBRAINS酌量基础设施发展(EBRAINS是HBP责任产生的酌量基础设施)。此外,本文还旨在向利益关联者、资助组织和酌量机构传达改日数字大脑酌量的信息,蛊惑他们的参与;探讨笼统性大脑模子在东说念主工智能,包括机器学习和深度学习方面的变革后劲;并概述一个包含反念念、对话及社会参与的合作酌量方法,以搪塞伦理与社会的契机与挑战,行动改日神经科学酌量的一部分。(本文为著述下篇。)

    要道词:东说念主类大脑,数字酌量器具,酌量阶梯图,大脑模子,数据分享,酌量平台

    ▷Amunts, Katrin, et al. "The coming decade of digital brain research: A vision for neuroscience at the intersection of technology and computing."Imaging Neuroscience2 (2024): 1-35.

    脑科学的全球化

    自21世纪初以来,脑科学酌量范围数字期间的应用赶紧膨胀,面前咱们不错分析来自数以千计大脑的多模态数据。这些数据通过公开的大家存储库(如英国生物银行)或全球麇集(如 ENIGMA, HCP)提供。天然,要是不可将这些海量数据迁徙为学问,进而深远领路大脑的复杂机制过火在正常行动、成长、虚弱及脑疾病中的作用,光特殊据亦然不够的。

    因此,咱们见证了复杂生成模子的兴起,这些模子结合了遗传信息和表型信息,跨越不同期间点来追踪大脑状态的时空变化(Iturria-Medina et al., 2018; Vogel et al., 2021; Young et al., 2018)。东说念主工智能策略在将庞杂数据集分类为合理界说的子组中起着越来越要害的作用,这些子组可能适用于定制解读,举例行动倾向的多基因风险评分或药物临床试验的分层。这些方法最终为个性化管束或医疗骚动提供了可能性。

    然则,寻找更隐微、更早期的大脑状态变化的生物象征物,通常需要辘集盛大数据来揭示那些与这些变化关联或可能导致这些变化的成分。这种搜索伴跟着同质性与代表性之间的常见冲突。天然不消置疑,大数据妙技应用于庸碌的大家数据存储库,如ADNI,PPMI,UK Biobank等,还是为咱们提供了对于东说念主类大脑机制和回路的通用性质的前所未有的瞻念察,但这些数据集大多源自西方国度,并不代表全球。

    数据存储库的效用需要充足丰富和多元的数据,以确保酌量效率过火鞭策的翻新不错在全球范围内的各种化东说念主群和环境中得到推论。性别各别、年事、社会经济地位、种族等成分在神经结构、功能和贯通表现上形成了个体各别(Dotson & Duarte, 2020),也影响了不同东说念主群间疾病的发生率、康复和糊口率的各别(Sterling et al.,2022; Zahodne et al.,2015)。此外,全球范围内对于酌量中申诉种族东说念主口信息的作念法存在各别(Goldfarb & Brown, 2022)。同期,低收入及中等收入国度(LMICs)在脑疾病和热枕健康问题的会诊和发病率等方面的举措不休增多,如东南亚国度定约(ASEAN)地区。

    全球合作的需求包括网罗、传播和分析来自LMICs的经过用心管束、详细表型和基因分析的数据集,以辨识全球不同亚东说念主群间的相似性和各别性。在莫得获取不同国度具有代表性的数据的情况下,无法对这些相比进行统计上的可靠推断,这超出了个别实验室的武艺。由于对现存数据集的重复使用导致它们的不可幸免的衰减(Thompson et al., 2020),代表性问题不可仅行动过后斟酌,而需成为遑急的优先事项。

    在接下来的十年里,跟着绽放数据分享倡议(如英国生物银行,OpenNeuro,CONP, EBRAINS等)在全球的膨胀,科学家对数据管束和分享的不雅念将继续演变(Donaldson& Koepke, 2022),资助者和学术期刊的期许也将发生变化(可参见2023年Nature Neuroscience社论“咱们若何促进数据分享”),这将极地面增多全球社区可用的各种化数据量。这将带来对关联和因果成分的新的领路,这些成分导致全球东说念主群中大脑和行动各别的出现。这些数据分享平台,许多还是运行十多年,还是达到了期间上的老练,未必守旧多国之间的绽放数据分享。

    然则,在不同平台之间开发明晰而无缝的互操作性仍有待完成,以确保结尾用户不错在不需要深远领路复杂期间细节的情况下进行操作。挑战不单是在于提供数据,更要害的是提供既有价值又易于讲解的数据,这些数据的开始必须服从FAIR数据分享原则(可查找的、可看望的、可互操作的、可重用的,Wilkinson et al., 2016)。从期间上实现数据互操作性、提供数据描述符和条约、战胜元数据圭表,这些方法不仅训诫了数据的价值和实用性,还有助于构建一个更强盛、更合作、更高效的酌量生态系统。

    然则,获取有风趣和可操作数据的必要性,也带来了一系列与数据治理和伦理关联的挑战。这些实践在不同群体间仍在演变,领有各种且有时不兼容的全球框架(Eke et al., 2022)。对于酌量中种族东说念主口信息的申诉也存在各别(Goldfarb & Brown, 2022),以及生成和处理数据的期间武艺、数据网罗的资金和其他社会文化成分亦然考量成分。到面前为止,来自非洲和拉丁好意思洲地区的数据集平常不被包括在全球脑科学酌量和翻新的商量中。

    下一个十年将见证在欧洲(如GDPR)、北好意思、亚洲、澳大利亚和非洲等地区不同的数据治理和伦理框架的和谐,以促进大脑数据在绽放神经科学全球社区内的更庸碌传播。咱们应愈加眷注武艺建筑、增多东说念主口信息的申诉、资助磋磨,并最终提上下收入和中等收入国度对数据生成、处理和分享的闭塞。

    毫无疑问,脑科学全球化的最要害的内容将是其“民主化”。不再是只是由高收入国度的科学家分析和发布的数据开始,咱们瞻望LMIC的科学家将在脑科学办事中演出越来越要害的变装。此种民主化天然演化自刻下数据分析流派(如CBRAIN、EBRAINS、BrainLife*)所提供的高瓜分析责任经过的普及。这些流派允许来自寰宇各地的酌量者在其他场地进行复杂的数据分析,摒除了后勤、行政和期间贫苦,这些贫苦也曾阻滞LMIC的科学家充分参与到脑科学社区。此外,通过结合数据分享和分析平台,还不错实现派生数据的从头分派。分享收尾至关要害,未必最大限制地减少科学冗余、增强可重复性,并促进LMIC场景中科学分析的可看望性。

    跟着东说念主们对分析决策在学习大脑模子中的作用领路的增强(Botvinik-Nezer et al., 2020),派生数据的传播将使科学探索的迭代和合作方法成为可能,并摒除了参预的主要贫苦。这种愿景也带来了需要搞定的一系列行政问题,举例学术招供、晋升、率领等,但这些问题还是是刻下绽放神经科学辩说的主题。全球化的拓展带来了限度与后勤的挑战,举例讲话和场地治理司法的问题,但这并不转变数据诡秘与绽放科学之间基本的矛盾。咱们预期跟着期间挑战的搞定,全球神经科学整合的愿景将在改日十年景为本质。

    大脑模子行动改日脑酌量的推能源

    在昔日二十年里,信息和通讯期间的迅猛发展不仅鞭策了模拟和机器学习期间的跨越,也使得数据与模子在并吞世态系统中实现互联互通,从而鞭策了新式脑模子的发展。大脑模拟平直愚弄了大脑基础酌量的效率,瞻望将在阐释脑过程的基本方面(通过展示其在体外模拟的武艺)如决策制定、嗅觉通顺整合、记挂形成等方面阐述要道作用。尽管咱们需警惕这些酌量所带来的伦理与玄学问题,但也不错设计愚弄这些模子和模拟来探索脑酌量中的具体问题。由此,咱们不难设计若何定制通用脑模子,以拿获某一特定患者大脑的独特特征。举例,个体的结构和功能性脑成像数据不错敛迹一个通用的数字脑模子,使其针对特定个体,从而用作个性化分析模板或体外模拟平台。

    这种方法的一个具体例子是虚构癫痫患者,在此方法中,神经影像数据率领对癫痫患者大脑的体外模拟,守旧会诊和休养骚动、临床决策和后果预测(El Houssaini et al., 2020; Jirsa et al., 2017; Wendling, 2008)。在磋磨神经科学的总体趋势下,基于关联神经回路学问,各式癫痫行动模子被构建。这些模子平常将神经元或神经群体麇集的癫痫发作讲解为一种高同步性/高振幅节拍状态。在无法平直从受试者获取数据的情况下,多级图谱数据成为另一种不错进一步丰富个性化脑模子的数据开始(Amunts et al., 2022)。

    这些个性化的“虚构大脑”不错被看作是向表面和期间上更具挑战性的新阶段迈进的一种跳板,这些挑战在伦理方面可能更为复杂,同期也更适合于大脑行动在总计时辰模范上的不休变化。个性化脑模拟的终极方针不错体面前一个连气儿通过信得过寰宇数据得到信息和更新的模子,这种模子被称为“数字孪生”。在这一布景下,“数字孪生”的见地需要被仔细界定,以幸免遮掩这种方法的局限性,并幸免制造对精准度的不切本体期待或产生金蝉脱壳的过度宣传(Evers & Salles, 2021)。

    历史上,“数字孪生”的见地发源于工业和制造范围(Grieves & Vickers, 2017; Grieves, 2019),包括三个组成部分:物理对象、其虚构对应物和两者之间的数据流动。物理对象的实测数据传递给模子,而模子的信息和过程反馈给物理对象。今天,“数字孪生”一词还是庸碌应用于其发源以外的多个酌量范围,包括生物医学范围,尽管该术语背后的见地可能存在各别。

    在制造业中,数字孪生不单是是一个普通的模拟模子。它是为特定对象制定的通用模子的具体实例,由该对象的本体数据守旧,举例在工业范围中的飞机引擎(Tao et al., 2019)。最近,在疏导的布景下,酌量者还漠视了“数字影子”这一见地行动一种更正方法。这种方法提供任务和情境依赖的、方针导向的、团聚的、持久的数据集,能以更纯竟然格式涵盖多个视角下的复杂本质,况兼性能非常透澈集成的数字孪生(Becker et al., 2021; Brauner et al., 2022)。

    数字孪生的一种解读波及到机器学习和东说念主工智能中生成模子的辩证关系。生成模子保证了模子的可讲解性。此外,它们促使咱们从“大数据”向“智能数据”的迁徙(更真实地说是取舍和整合数据特征,以最大化预期的信息增益)。生成模子是从潜在原因到可测量收尾的映射的概率描述。在这个风趣上,数字孪生不错看作是一个适应生成某个特定细胞、个体或群体反应的模子的认真界说。正确构建生成模子要道在于,它未必提供对实验数据的可讲解的机械性讲解。此外,它分别在模子拟合(即反演)和模子取舍(即假定)方面分离了从下到上与从上至下的建模方法。

    在构建一个活体器官的“数字孪生”时,面对的挑战超出了构建一个无生命对象的数字孪生时的挑战。大脑无疑是面前已知的最复杂和多面的器官。那么,在神经科学和大脑酌量中,数字孪生的见地未必被多大程度地应用呢?要是粗拙地将数字孪生见地1:1地应用于大脑,可能会引起严重的歪曲。在这里,咱们但愿通过在脑科学的特定布景下明确界说这一术语,为关联商量作念出孝敬。咱们分离了方针驱动的数字孪生和大脑的透澈数字复成品(或副本/复制),后者代表了大脑总计层面总计方面的完整呈现(参见Box 3)。

    大脑的透澈复制既不可实现,也似乎莫得明确的实用价值。咱们商量中的数字孪生应被领路为一个虚构模子,旨在充分代表一个对象或过程,受其物理对应物的数据敛迹,并提供模拟数据以率领取舍并猜测自后果。数字孪生因此是实用风趣上的复制,平常与一个功能或过程的模子关联,其力量在于它在处理其物理对应物所面对的关联问题时的灵验性,保持适应的抽象水平。因此,其方针不是尽可能地详细和多档次地模拟生物大脑,而是取舍性地减少那些对特定酌量问题具有预测价值的数据信息量,保持模子尽可能粗拙,同期确保其复杂度足以搪塞需要。

    即即是特意用于领路特定大脑结构和能源学,或是预测特定患者的病情进展的模子,也需要依赖于全面而复杂的数据源,以构建信息丰富的虚构大脑模子。举例,东说念主类大脑磋磨已在EBRAINS上建立了一个高分辨率的多档次东说念主类大脑图谱,行动结构与功能数据的集成平台。对于每个模子,咱们齐需要说明增多的数据是否竟然增强了模子的强度,即这些数据是否使预测更准确、可考据?咱们需要继续监控在更好的预测与网罗数据的可行性及关联本钱之间的衡量,并评估这些数据取舍是否适应刻下的问题,即是否响应了要道的决定成分(Box 3)。

    Box 3:数字大脑模子分类大脑模子:大脑模子是大脑的数字暗示,这一术语在不同的情境中有不同的用途;常见的包括数字图谱、东说念主工神经麇集、剖解模子、生物物理模子、麇集模子、贯通和行动模子,以及数学和数据驱动的模子。个性化大脑模子:个性化大脑模子是一种特殊类型的模子,通过将一个个体的特定数据整合到更庸碌的模子中来进行个性化(举例,通过虚构癫痫患者实现)。数字孪生:下一代个性化大脑模子,它们通过不休地融入实时数据而不休发展。这些模子是为了搞定特定酌量问题而有方针地设计的,整合了关联的数据。透澈复制:这是一个假定的见地,指的是在总计层面上完整地数字化暗示一个大脑的想法,最终包括对数字孪生体的讲解。

    数字孪生与其他个性化虚构大脑模子的一个显贵区别在于,数字孪生能继续吸收来自本质寰宇的新信息,以实时适合其环境。在神经科学范围,大脑的“数字孪生”极具出路,可用于继续调整功能性神经康复的骚动方法或定制神经期间骚动决策。应用高保竟然准实时更新的东说念主脑数字孪生模子,需要在期间上进行开发,如将孪生大脑生态地千里浸于模拟环境、高带宽结识的脑机接口和极高的磋磨武艺等,这些范围的糟蹋仍是远方的经久方针。尽管如斯,数字孪生已在神经科学和医学范围找到应用,前提是充分斟酌到刻下大脑模子的局限、个性化过程及期间更新频率的挑战。数字孪生界说了刻下数字神经科学发展旅途的视线,并应被视为改日发展的驱能源。

    尽管大脑的数字孪生在具体应用上还有一段距离,但数字大脑酌量的时期还是无疑开动了,不管是在本质寰宇如故在酌量范围齐是如斯。数字大脑酌量是一个笼统见地,涵盖了数据、模子、表面、方法和磋磨期间,集成于 HBP 框架下的总计酌量和开发责任。它的价值体面前告捷演示里面和外部灵验性、生态和构建灵验性等方面。这使酌量东说念主员未必搪塞神经科学数十年来面对的主要挑战,如个体表里变异性、机制不解确性和多模范复杂性等问题。EBRAINS 提供了一个平台和用户界面,守旧数据、模子和方法组件的互操作性,为数字大脑见地在神经科学酌量中占据中心舞台提供了操作基础。

    咱们以为,在短至中期内,数字大脑模子不错在以下三个范围阐述要害作用:(1)基础大脑酌量,(2)医学应用,(3)基于大脑的期间开发。

    基础大脑酌量

    数字大脑模子过火模拟并不会替代基础酌量和学问累积,而应视为一种有利的“工程”器具。它面前充任一个在进展中的预测模子,旨在(1)测验现存学问,(2)预测骚动效果。后者尤为引东说念主眷注,因为骚动妙技正不休增多,诸如深部脑刺激(DBS)、经颅磁刺激(TMS)、经颅直流电刺激(tDCS)、经颅聚焦超声刺激(tFUS)、药物、光遗传学和光药理学等。天然已有多项酌量愚弄磋磨大脑模子来进行预测、率领骚动酌量的设计并讲解不雅测到的效果(Frank et al.,2004,2007),但这些方法面前通常是基于“半申饬”的应用,波及电极位置、电路团结、功能及电气模子、神经元类型的遗传启动子、神领受体的抒发模式过火信号通路模子等信息。数字孪生期间可能促进这些参数的合理决策,测试收尾,并随后对模子进行评估和修正等。

    为了取得告捷,底层模子必须具有生物本质性,即在剖解上精准且在功能上全面。它们最终应能关联大脑结构与功能和行动,并可能用于酌量贯通、讲话、闭塞或厚谊。这需要整合不同档次的高度异质数据,包括体内和离体数据,并将它们置于疏导的空间参考框架中。在一种替代而互补的方法中,细胞图谱麇集(BICAN)将取舍好意思国细胞普查麇集(BICCN)的方法,膨胀至通盘东说念主脑,对哺乳动物大脑的组成部分进行深远的特征描述,举例,对低级通顺皮层的最详备、最全面的多模态模子进行酌量,这包括单细胞转录组和卵白质组、染色质可及性、DNA甲基化组、空间分辨单细胞转录组、形态和电生理脾气及细胞分辨率输入输出映射(Callaway et al.,2021)。

    基于这一见地,大脑模拟在阐释大脑的复杂性中演出了要道变装,它通过允许测试对于大脑多级组织过火适度周围体格功能的假定来实现(参见下文)。昭着,沿此酌量标的,不同空间层面上实施的模拟的相互团结将变得日益要害。举例,分子层面的 EBRAINS 模拟引擎 Gromacs、细胞层面的 Arbor 和 NEURON、系统层面的 NEST、全脑层面的 Virtual Brain 以及体现生物体过火环境的神经机器东说念主平台(见 Brain-derived technologies);概述见 Einevoll et al., 2019。

    与信得过活体大脑不同,镶嵌式模拟大脑不错在职何空间和时辰点进行抽样。因此,咱们未必监测到模拟大脑中总计基于本质寰宇数据或物理化学模拟的过程,并使用模拟测量开荒如多阵列电极、fMRI扫描仪来不雅察。表面上,它不错在全身闭环环境中测试各式功能假定;此外,还可能构建能源学剖解图谱,举例在特定刺激下不雅察大脑区域的变化和过程的图谱,总计这些齐能在信得过模拟的实时中实现。

    活体大脑的复杂多模范结构、有限的测量可接近性和对大脑过程领路的不完整,xiao77图片使得数字孪生期间的实施极具挑战。BigBrain 行动一个剖解模子可能成为严格风趣上整合孪生数据的支架(Amunts et al., 2013),这些数据包括其他开始的能源学细胞数据、实验东说念主群酌量的数据以及由模子和不同大脑模拟的合成数据。这种方法也界说了数字孪生策略的适度和灵验范围,对于负包袱地使用此期间过火后续的信任至关要害。然则,这些数据驱动的模子可能代表了在职何特定时辰点可实现的活东说念主大脑的最接近的数字暗示。改日,数学的新视力将必要塞加快模拟和模子分析(Lehtimäki et al.,2017,2019,2020)。

    据此,咱们不错设定以下方针:(1)发展多层大脑图谱和高分辨率的大脑模子。(2)启用多层大脑模子和模拟。(3)揭示贯通和行动的机制。

    大脑医学

    从这些数字孪生期间中,咱们不错繁衍出个性化孪生期间,方针所以全新且高效的格式改善患者的会诊和休养,守旧大脑健康的策略,正如欧洲神经学院最近发布的关联策略所示 (Bassetti, 2022)。与腹黑数字孪生相似 (Gillette et al., 2021),即基于临床数据生成的与总计可用临床不雅察数据相匹配的患者腹黑数字副本,东说念主类的电生理副本在率领临床决策方面高慢出巨大后劲,况兼有助于以本钱效益高、安全且合适伦理的格式测试新的开荒休养决策。医学中的数字孪生专注于特定的空间限度,具有明确的粒度,涵盖特定的时辰休止,办事于特定的方针。近期漠视了针对阿尔茨海默病的数字孪生方法 (Stefanovski et al., 2021),尽管需要严慎斟酌数据诡秘、安全性和安全方面的问题,但个性化孪生也可能成为休养此类疾病的一个特殊有劲的策略。

    虚构大脑(Virtual BigBrain,TVB)允许左证受试者的神经影像和 EEG 数据以及 BigBrain 模子的剖解数据构建个体化的团结组 (Jirsa et al., 2017)。正在进行的EPINOV临床试验取舍了 TVB,这在该范围是一大跨越;科学家们开发了患者脑部的个体模子,以率领和预测癫痫手术的最好休养效果 (Jirsa et al., 2023; Proix et al., 2017; Wang et al., 2023)。他们所用的策略是将群体数据与个别脑部数据结合,开发出充足信得过的虚构脑模子,也就是孪生体,使得不错在手术前进行骚动模拟。对于那些在麻醉期间仍继续发作的难治性癫痫患者,平常需要经久的重症监护,并面对极高的弥远神经损害和弃世风险。对这些患者而言,数字孪生不错用来审查盛大模子,继续得到来自 EEG 的反馈、药物反应以及血液中离子轻柔体的浓度等信息,这些齐是重症监护环境中容易获取的数据。

    数字大脑建模的实用性由DBS说明,DBS是几种难治性神经疾病的老练外科休养方法。面前,临床上的 DBS 平常取舍“开环”系统,即按照固定参数继续施加刺激。这些参数在植入后可调整,但调整是手动进行的,且操作造反常,主要基于不雅察患者的明显症状。相对而言,“闭环”、自适合的DBS被开发出来以克服传统DBS的适度,它左说明时的临床关联生物反馈信号调换神经回路 (Marceglia et al., 2021)。然则,告捷应用这些期间,需要深远领路神经可塑性和学习机制。

    面对局部大脑损害如中风或创伤性脑损害的应用也需访佛的期间。除了侵入性休养骚动,数字孪生亦然一个预测大脑损害后果、病理生理和可塑性的强盛器具,有时这些可通过磋磨神经热枕学来描述,即使用合成损害在磋磨模子中模拟损害与弱势之间的关系 (Parr et al., 2018)。这不错显贵训诫咱们个性化神经康复的武艺,同期整合由虚构本质和机器东说念主休养产生的复杂信息,以及精准测量患者的反应和跨越。

    其他应用不错愚弄模拟测试一个限度巨大于信得过东说念主群的“临床”模拟东说念主群,从而通过创建“数字患者”群体来放大数据。这种方法对于评估冷落病、酌量性别影响或预测疾病进度尤其有蛊惑力 (Maestú et al., 2021)。此外,使用的数据源越各种和异质,模子在其他数据集上的表现就越好,这也提高了模子的普适性。这是调理系统提供的一大特色,它有助于增多数据开始的各种性(举例,Dayan et al., 2021)。

    最近,DeepMind 开发的 AlphaFold 系统 (Jumper et al., 2021),该系统通过应用深度学习方法,已未必预测卵白质的 3D 结构。这种期间可推论至系统级,用于测试药物与卵白或药物-卵白系统的相互作用。此外,从在虚构环境中测试药物的效果到揭示药物在分子及系统级别的作用机制,这些齐是此期间的进一步发展标的。斟酌到量子力学/分子力学在磋磨上的高要求,这种系统级的方法需要在最强盛的超等磋磨机上运行的高度可膨胀器具。不错使用NEURON和Arbor构建和模拟的讲究的局部微电路模子,平直用于映射某些分子(如离子通说念、受体)的局部分散,然后用来模拟药物对这一系统的影响。这些小限度模子不错左证特定病理条目进行调整,然后迁徙为针对患者的平均场模子,提高数字孪生的精度。

    更庸碌地说,东说念主类大脑酌量范围与非东说念主类大脑酌量范围的增强交流,可能会协同搞定生物医学科学中经久存在的问题(Devinsky et al., 2018)。东说念主类和伴侣动物患有一些疏导的疾病(举例癫痫、癌症、肥美)。像东说念主类一样,患有癫痫的狗在生病时也需接受脑部扫描。这些疾病和休养的重迭标明,东说念主类医学和兽医学之间存在未被充分愚弄的契机,这些契机不错用于在伴侣动物中测试个性化医学和数字孪生的灵验性,进而在东说念主类中实施。

    终末,大脑孪生期间瞻望将有助于发展“东说念主体孪生”期间。这一视角超越了单纯增多一个器官的层面,因为它将允许在系统级别模拟神经系统行动与其他器官的相互作用,举例心脑耦合,以及大脑与胃肠说念的团结。这些相互作用庸碌且双向。举例,最近的酌量发现,东说念主类大脑中有一个固有的调换内环境和内嗅觉系统,包括适度体格内环境的皮层适度区域,守旧体格的恒常性调换 (Kleckner et al., 2017)。此外,如呼吸等体格过程是节拍性神经行动的要害推能源 (Tort et al., 2018)。捕捉这些双向互动将有助于咱们领路大脑若何守旧要害的体格功能——可能还包括在功能受损时若何复原它们。

    欧洲委员会面前正在制定的数字东说念主孪生阶梯图中,多器官或多模范数字孪生的双向和系统性集会是一个要道要素 (https://www.edith-csa.eu/)。

    因此,酌量者不错笃定以下方针:(1)在生命周期中得到对于大脑可塑性、学习和适合的详细视力。(2)加快数字大脑医学的发展。(3)探索并模拟大脑行动体格一部分的模子。

    大脑繁衍期间

    一项基本挑战在于笃定大脑建模所需的讲究度级别、过渡性磋磨以及模拟开发的类型,以便守旧各式贯通和嗅觉通顺功能的表露。模拟东说念主类大脑的模子被缔造在具体环境中,即这些模子能适度虚构或实体的体格与本质的虚构或本体的物理环境互动,并吸收依时辰变化的输入流来产生行动输出,这为酌量大脑结构、大脑行动与贯通及功能表现之间的计算提供了一个极具蛊惑力的平台。

    若何评价这种从下到上的组合及数字孪生系统的表露行动与生物数据的一致性,仍是一个继续的挑战,因为典型的合成发展环境与天然环境不一致。Yong (2019) 在《大泰西》[12]杂志的特稿《东说念主类大脑技俩未能收场其痛快》(The Human Brain Project Hasn’t Lived Up to Its Promise)中指出,“大限度模拟有助于领路容颜和星系,但行星系统只眷注它们自身。而大脑则是为了处理其他事务而构建的……模拟组织是可行的,但莫得风趣。”

    前文段落列举了几例模拟在基础神经科学和大脑医学中取得进展的例子,针对的是明确的酌量问题。此外,从一开动,HBP便旨在发缓期间,以便酌量大脑与环境的互动(Booklet,2016)。换言之,某些大脑过程的模拟被镶嵌到一个信得过或模拟的体格中,其总计传感器和实施器齐与模拟连络。原则上,这些传感器和实施器不错是信得过的、模拟的,或两者的结合。相通,这个体格被置于一个信得过或虚构的寰宇中。一朝领有了这些元素,不管是模拟的如故信得过的,咱们就能以任何合理的格式组合它们。

    昭着,这种方法高度依赖于模拟信得过寰宇物理容颜的模子,况兼还需要复杂的软件来高保真地模拟空间环境,并提供充足的环境、传感器和实施器物理模拟,团结大脑模拟器,提供存储模拟收尾的设施、图形渲染和这些复杂软件模块的和谐。总计这些(共同)模拟不错在不同的时辰模范上运行(逸想情况下天然是实时的),在闭环或开环的情景中,况兼以不同的粒度对实体进行建模。

    HBP 的神经机器东说念主平台[13]是一个专为实施总计这些设施而设计的软件环境,它基于来自生物实验的各种化数据集和信得过寰宇机器东说念主的输入运行模拟,并在这些模拟的基础上整合了机器学习。天然这个平台当先是为设计那些由生物学启发的大脑模子适度的神经机器东说念主而构念念的,但它跟着时辰的推移已演变成一个未必团结和整合从模拟小鼠体格到复杂传感器模子,以及各式神经元和大脑模拟器的各式实体的软件环境。如今,神经机器东说念主平台不仅是一个机器东说念主设计的环境,同期亦然实施神经科学实验的平台。因此,它是一个强盛的虚构神经科学器具,致使不错用透澈在该平台内运行的磋磨机实验取代系统级体内实验。

    此外,神经机器东说念主平台还允许在机器东说念主建造之前,用信得过的神经科学数据来教师具体化机器东说念主的“大脑”(基于 AI 的适度器)。不错假想,一个模拟的信得过环境副本可行动教师的基础,从而让机器东说念主在被托福给结尾用户之前进行预教师,用户只需对(表露的)行动作念出小的调整,以确保机器东说念主未必完竣实施其任务。咱们将这种模式下的方法称为大脑繁衍期间,因为它们平直基于并建立在大脑酌量的发现之上。要害的是,这些发现不错在不同的组织层面得以实施。

    在神经形态工程中,主要组件即生物神经元,通过功能等效的电路被模拟,构建高能效的模拟处理器和传感器。运行在这些系统上的神经模子不错源于已在生物大脑中识别的特定类型的神经元、微电路或大脑区域。当这些系统与机器东说念主实体(不管是模拟的如故物理的)或生物体相团结时,它们不错复制感知、贯通和行动的完整闭环的某些方面。因此,建模不错膨胀到通盘有机体,并覆盖复杂贯通过程在行动层面的总计方面。大脑繁衍期间因此不仅限于师法大脑的结构特征,还不错包括贯通模子和架构以过火基础的神经能源学。这些期间将成为大脑酌量的新器具,并鞭策磋磨、机器东说念主学和东说念主工智能范围的翻新。

    神经康复范围瞻望将极地面受益于这种方法,其中本质的大脑-体格互动模子将有助于揭示阐述作用的神经机制(Rowald & Amft, 2022)。通过将详备的大脑模子与脊髓和肌肉骨骼系统的模子结合,为咱们提供了独特的契机,来详备地酌量神经行动与通顺行动之间的关系。因此,个性化模子因此不错整合到决策守旧系统中,匡助大夫或休养师取舍和组合康复策略。它们还可能守旧中央神经系统(包括脊髓)刺激期间和功能性电刺激的糟蹋性发展,提高这些期间的效果并扩大它们的适用范围。最近一项告捷的硬脊膜外电刺激休养脊髓损害的应用报说念高慢了这种方法的后劲(Rowald et al., 2022)。

    相通,高保竟然东说念主体肌肉骨骼系统和中央神经系统模子的结合,有望守旧所谓的电子药物(electroceuticals)的磋磨机期间的出现,这些开荒用于休养方针的医疗开荒(举例,在帕金森病、癫痫等疾病中提供神经刺激)。医疗开荒行业无疑对率领其居品设计、生成疗效预测以及举座缩短居品开发过程的风险具有根人性的赞佩。因此,愚弄 HBP 创建的大脑图谱和多模范大脑模拟器,似乎应该实时斟酌网罗和整合新数据(举例介电脾气),行动开发用于评估电子药物的模拟器具和办事的前奏。斟酌到DBS已被庸碌使用,模拟这些电子药物的效果昭着长年累月。

    HBP已守旧 SpiNNaker 多核和 BrainScaleS 物理模拟神经形态磋磨平台建立首个绽放的神经形态磋磨办事,并为这些期间的进一步发展作念出了孝敬(Furber & Bogdan, 2020)。神经形态期间,其中数据传输和处理齐是基于事件的,即基于脉冲的,为边际磋磨、出动机器东说念主和神经义肢期间提供了多种契机。

    斟酌到出动系统自动化和“永远在线”传感器阵列确刻下趋势,至极是神经形态开荒有望提供增强的低蔓延容量,用于感知、贯通和行动,同期减少系统上操作对系统能源徒然的影响(Cramer et al., 2022; Göltz et al., 2021)。举例,将产生脉冲的处理单位与产生脉冲的传感器(举例,动态视觉传感器、动态音频传感器)结合成完整的神经形态系统,将使数据和会愈加容易,并克服与数据开始异质性关联的适度。通过突触可塑性,尤其是神经回路学习的神经磋磨领路的进展,也将为赋予神经形态电路更复杂功能提供新的方法,并缩短教师本钱(举例,一次性和连气儿在线学习)。至极是,对局部可塑性的适度组成了相对于传统冯诺依曼架构的明显上风。

    如 BrainScaleS 所示,模拟生物神经元的离子流动的模拟神经形态处理系统的电路是通过电流实现的。与基于经典冯·诺依曼架构的传统微处理器不同,每个硅神经元齐被物理地镶嵌到芯片中,配备专用组件。就像大脑中的神经元一样,这些硅神经元通过脉冲交换信息,这种格式极为高效,亦然神经形态系统成为新一代实时且节能磋磨机的出路光明的原因之一。他们平直从大脑的结构派生的要害后果是,神经形态处理器平常不适应加载外部数据,而是守旧实时在线学习。这种独特的功能使新类型的学习规章成为可能,这些规章不需要庞杂的数据集,而是不错左证需要动态适合。

    基于脉冲时序依赖性可塑性的学习规章是大脑繁衍系统的一个显贵告捷案例(Diamond et al., 2019; Kreutzer et al., 2022)。它们平直植根于实验收尾,并已成为表面神经科学和神经形态工程酌量学习算法的基石。值得扎眼的是,传统机器学习也极地面受益于大脑酌量。其中最着名的例子可能是卷积神经麇集,其理念当先就是从视觉皮层的结构中索要而来的。

    神经形态传感器是基础大脑酌量促进新期间出现的另一个要害范围,尤其是动态视觉传感器和动态音频传感器。前者师法视网膜的功能,况兼像神经形态处理器一样,用尖峰编码信息。它们的特色与传统的同类居品透澈不同。由于它们只发出变化信号而不是拿获完整图像帧,因此它们能以极高的效率运行,催生了新式图像处理算法,并逸想地与神经形态处理器相结合。

    从期间角度来看,东说念主类大脑也被视为在东说念主工系统中实现高等贯通武艺的最有出路的“罗塞塔石碑”。当代东说念主工智能体的特色是武艺水平有限,难以在提供的教师集以外进行泛化,其对环境的领路平常也较为肤浅。穷乏泛化武艺意味着需要大数据集(资源密集型的大数据范式)、继续的东说念主工监督(良友适度系统)或庸碌且严格的任务估量打算以搪塞各式情况(如用于行星或海洋探索)。感知的肤浅和穷乏可讲解性导致东说念主工感知系统的鲁棒性和可靠性不及,这是实现存效的自动驾驶等期间的已知贫苦之一。为了克服这些适度,必须开发与新的具身和增量学习算法相结合的大脑启发的多区域模子架构,以寻找最能模拟东说念主类感知贯通功能机制的那些算法。愚弄这些机制并领路贯通功能的表露将是创建可讲解、可靠并最终更通用的东说念主工智能的要道。

    大脑的功能架构过火不同区域是为期间系统界说许多类型贯通架构的基础。这对于机器东说念主学尤其如斯,其中大脑繁衍方法被庸碌酌量。包括酌量与具身关联的容颜或开发新式感知和传感系统的例子,如受本体啮齿动物的体感系统启发的东说念主造触须。

    东说念主工智能应用的神经麇集改日的发展将看到主流东说念主工智能与神经形态期间之间的和会。多模范大脑模子不错为构建高等机器东说念主适度器作念出要道孝敬。这些适度器不错镶嵌塑性规章并通过与环境的互动自主适合。因此,基础大脑科学将是这些期间发展的要道信息开始。此外,神经形态磋磨可能有助于减少大型深度学习模子的盛大碳萍踪(Strubell et al., 2019)。

    由此,不错推导出以下方针:(1)桥接东说念主类与机器智能之间的差距。(2)构建神经形态大脑模子和仿生东说念主工智能。

    论断

    要深远领路大脑功能,必须愈加深远地了解大脑的组织结构以及基本的生物过程、它们之间的相互关系过火规章。这是提高驻守、休养及基于机制的会诊效率的基础。在改日十年的数字大脑酌量中,一个有但愿的标的是开发未必进行个性化模拟的大脑数字孪生体。天然面前已可行,但大脑的数字孪生体仍处于初期阶段,开发完成后必须经过严格的测试和考据,才能灵验搪塞大脑疾病,并成为颠覆性新式健康期间的基础。因此,咱们需要领路系统过火子系统的磋磨方针和算法,以明确在个案实施中的适度和可能性。此外,大脑孪生体所引发的伦理问题需要咱们与社会公开对话并加以搞定。孪生体可视为大脑模子和分析继续发展的一个绝顶。

    为实现这一方针,构建一个未必承载大脑数字孪生体的数字基础设施,有助于咱们领路规章并更正数字大脑孪生体,直至通过考据测试,并可用于临床应用。此外,这种基础设施逸想情况下应当提供互操作性、信息安全、多档次数据以及看望基于学问的磋磨资源,包括高性能磋磨和其他关联期间。EBRAINS 就是一个能承载这些发展的基础设施。要告捷实现这一方针,对年青一代进行培训,使其未必熟练愚弄这些基础设施和新的数字器具,显得尤为要道。

    构建结构化数据和学问,以便酌量社区未必节略从头组合并集成,从而构建出开阔的数字大脑孪生体,并提供实施这些孪生体复杂模拟的强盛期间,这本人就可能成为一种颠覆性期间,匡助咱们得到科学上的新洞见。

    科学方针:一份阶梯图

    以下的“阶梯图”概述了改日十年内八个相交叉的酌量范围的方针,涵盖了从近期或刻下责任,中期,到经久的不同阶段。这是基于之前提供的输入得出的论断。

    开发多档次大脑图谱和高分辨率大脑模子

    近期:将从通盘大脑到细胞的数据整合成一个全面、高分辨率的大脑图谱,行动深远领路大脑组织基本原则的基础,以预测图谱不完整部分的特征,并率领对于物种间相似性和各别的相比酌量。

    中期:制作详备的、数据驱动的、多模范模子,以酌量东说念主类大脑组织在不同生命阶段及不同条目下的变异性。

    经久:阐释大脑组织和结构中负责复杂行动、武艺和闭塞关联方面。

    启用多档次大脑模子和模拟

    近期:实现模子的多模范整合,从局部生物物理属性到通盘大脑模子,包括详备的从下到上和从上至下的模子。这些模子将由数据过火预测测试驱动和调整。

    中期:愚弄多模范、全脑模子模拟生物学信得过的复杂大脑功能,渐渐实现具体应用场景的数字大脑孪生。

    经久:将模子预测应用于基础科学、医学和东说念主工智能的大限度应用案例中,从而鞭策模子的测试和进一步完善,形成一个“出产性轮回”。

    发达贯通和行动的机制

    近期:从多模范角度动身(从嗅觉和视觉通顺功能到更复杂的贯通功能),建立描述贯通功能机制的连贯框架。

    中期:构建一个对于讲话的连贯框架,行动东说念主类独特的复杂贯通功能,和会讲话学和神经科学的酌量洞见,通过酌量发展过程考察大脑专科化,并为讲话模子和东说念主工智能的发展提供基础。

    经久:将各式假定下的见地和自我闭塞相互计算,并与细胞、分子及遗传层面的机制相结合。

    在生命周期中得到大脑可塑性、学习和适合的深远洞见

    近期:识别可塑性、学习和适合的规章并将其整合到现存的多档次大脑模子中。

    中期:笃定大脑可塑性的适度,并开发器具以利于患者。

    经久:揭示记挂悠闲的机制,并将其应用于医学和期间范围。

    加快数字大脑医学的发展

    近期:愚弄大脑图谱和个东说念主病例数据,开发并应用个性化模子,会诊和休养各式大脑疾病(如癫痫、肿瘤、通顺贫苦、中风、精神疾病等)。

    中期:构建数据驱动的发育和虚弱模子并将其应用于不同庚事组(从儿童到老年东说念主)的大脑医学。

    经久:开发并应用数字化体格副本,继续适合新的本质生活传感器数据,用于大脑医学的各个方面(如会诊、康复、重症照料和手术)。

    将大脑行动体格的一部分来探索和建模

    近期:将先进的数字大脑模子与基于多级图谱的脊髓模子计算起来,从中开发新的刺激方法。

    中期:对交互、任务表现和导航的嗅觉通顺整合和和谐进行建模。

    经久:将躯体和自主调换整合到组合的多器官模子中,构建未必响应神经系统、器官和体格调换功能的孪生患者,并开发和应用未必模拟神经系统、内分泌/激素、免疫调换和稳态机制的细胞层面体格副本。

    缩庸东说念主类与机器智能之间的差距91porn邀请码

    近期:使用与丰富环境交互的机器东说念主来模拟复杂的行动;促进神经形态期间促进深度学习东说念主工智能和基于事件(尖峰)神经麇集的和会;以绽放、透明的格式民主化和开发复杂的(受大脑启发的)东说念主工智能模子,包括大讲话模子。

    中期:应用对贯通功能(如感知和决策)背后大脑机制的瞻念察,模拟东说念主工智能和神经形态期间范围的学习和发展过程,并测试器官类群和类器官智能(OI)的潜在作用。

    经久:将全新的见地和算法应用于机器学习和新颖的工程应用(举例,新材料、东说念主造生命、替代和增强盛脑功能)。

    类脑模子和仿生东说念主工智能

    近期:使用基于集成与激勉(leaky-integrate-and-fire)的神经元模子,开发基于尖峰的深度神经麇集的教师方法。在模拟环境中整合复杂的硬件神经元模子。

    中期:使用复杂的神经元模子,开发大限度且高性能的尖峰麇集模子的硬件和教师方法。

    经久:将可塑性酌量的效率整合进来,发展具有内置学习武艺的大限度尖峰麇集。

    参考文献:

    http://www.tel0431.cn

    http://www.szjipin.com.cn

    http://www.foshanhotel.com.cn

    http://www.radioasia.cn

    http://www.lbgl.com.cn

    http://www.0455.sh.cn

    http://www.cdhlxx.cn

    http://www.fzxxw.cn

    http://www.runluan.cn

    http://www.jinanmatong.cn

    http://www.cqjgjs.cn

    http://www.0754ny.cn

    http://www.klbb.ac.cn

    http://www.xmel.cn

    (2018). Big data needs a hardware revolution. Nature, 554(7691), 145–146. 10.1038/d41586-018-01683-1

    (2023). How we promote data sharing. Nat Neurosci, 26(12), 2038. 10.1038/s41593-023-01529-8

    Abadía, I., Naveros, F., Ros, E., Carrillo, R. R., & Luque, N. R. (2021). A cerebellar-based solution to the nondeterministic time delay problem in robotic control. Sci Robot, 6(58), eabf2756. 10.1126/scirobotics.abf2756

    Allegra Mascaro, A. L., Silvestri, L., Sacconi, L., & Pavone, F. S. (2015). Towards a comprehensive understanding of brain machinery by correlative microscopy. J Biomed Opt, 20(6), 61105. 10.1117/1.Jbo.20.6.061105

    Amit, D. J., & Brunel, N. (1997). Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex. Cereb Cortex, 7(3), 237–252. 10.1093/cercor/7.3.237

    Amunts, K., DeFelipe, J., Pennartz, C., Destexhe, A., Migliore, M., Ryvlin, P., Furber, S., Knoll, A., Bitsch, L., Bjaalie, J. G., Ioannidis, Y., Lippert, T., Sanchez-Vives, M. V., Goebel, R., & Jirsa, V. (2022). Linking brain structure, activity and cognitive function through computation. eNeuro, 9(2), ENEURO.0316-21.2022. 10.1523/eneuro.0316-21.2022

    Amunts, K., Ebell, C., Muller, J., Telefont, M., Knoll, A., & Lippert, T. (2016). The Human Brain Project: Creating a European research infrastructure to decode the human brain. Neuron, 92(3), 574–581. 10.1016/j.neuron.2016.10.046

    Amunts, K., Knoll, A. C., Lippert, T., Pennartz, C. M. A., Ryvlin, P., Destexhe, A., Jirsa, V. K., D’Angelo, E., & Bjaalie, J. G. (2019). The Human Brain Project-synergy between neuroscience, computing, informatics, and brain-inspired technologies. PLoS Biol, 17(7), e3000344. 10.1371/journal.pbio.3000344

    Amunts, K., Lepage, C., Borgeat, L., Mohlberg, H., Dickscheid, T., Rousseau, M., Bludau, S., Bazin, P. L., Lewis, L. B., Oros-Peusquens, A. M., Shah, N. J., Lippert, T., Zilles91porn邀请码, K., & Evans, A. C. (2013). BigBrain: An ultrahigh-resolution 3D human brain model. Science, 340(6139), 1472–1475. 10.1126/science.1235381

    Amunts, K., Mohlberg, H., Bludau, S., & Zilles, K. (2020). Julich-Brain: A 3D probabilistic atlas of the human brain’s cytoarchitecture. Science, 369(6506), 988–992. 10.1126/science.abb4588

    Aru, J., Suzuki, M., & Larkum, M. E. (2020). Cellular mechanisms of conscious processing. Trends Cogn Sci, 24(10), 814–825. 10.1016/j.tics.2020.07.006

    Axer, M., & Amunts, K. (2022). Scale matters: The nested human connectome. Science, 378(6619), 500–504. 10.1126/science.abq2599

    Balakhonov, D., & Rose, J. (2017). Crows rival monkeys in cognitive capacity. Sci Rep, 7(1), 8809. 10.1038/s41598-017-09400-0

    Balsters, J. H., Cussans, E., Diedrichsen, J., Phillips, K. A., Preuss, T. M., Rilling, J. K., & Ramnani, N. (2010). Evolution of the cerebellar cortex: The selective expansion of prefrontal-projecting cerebellar lobules. Neuroimage, 49(3), 2045–2052. 10.1016/j.neuroimage.2009.10.045

    Barbas, H. (2015). General cortical and special prefrontal connections: Principles from structure to function. Annu Rev Neurosci, 38(1), 269–289. 10.1146/annurev-neuro-071714-033936

    Barbero-Castillo, A., Mateos-Aparicio, P., Dalla Porta, L., Camassa, A., Perez-Mendez, L., & Sanchez-Vives, M. V. (2021). Impact of GABA(A) and GABA(B) inhibition on cortical dynamics and perturbational complexity during synchronous and desynchronized states. J Neurosci, 41(23), 5029–5044. 10.1523/jneurosci.1837-20.2021

    Barson, D., Hamodi, A. S., Shen, X., Lur, G., Constable, R. T., Cardin, J. A., Crair, M. C., & Higley, M. J. (2020). Simultaneous mesoscopic and two-photon imaging of neuronal activity in cortical circuits. Nat Methods, 17(1), 107–113. 10.1038/s41592-019-0625-2

    Bassetti, C. L. A. (2022). European Academy of Neurology 2019–2022. Eur J Neurol, 29(9), 2567–2571. 10.1111/ene.15421

    Bastos, A. M., Vezoli, J., Bosman, C. A., Schoffelen, J. M., Oostenveld, R., Dowdall, J. R., De Weerd, P., Kennedy, H., & Fries, P. (2015). Visual areas exert feedforward and feedback influences through distinct frequency channels. Neuron, 85(2), 390–401. 10.1016/j.neuron.2014.12.018

    Becker, F., Bibow, P., Dalibor, M., Gannouni, A., Hahn, V., Hopmann, C., Jarke, M., Koren, I., Kröger, M., Lipp, J., Maibaum, J., Michael, J., Rumpe, B., Sapel, P., Schäfer, N., Schmitz, G. J., Schuh, G., & Wortmann, A. (2021). A conceptual model for digital shadows in industry and its application. In A. Ghose, J. Horkoff, V. E. Silva Souza, J. Parsons, & J. Evermann (Eds.), Conceptual modeling. Springer. 10.1007/978-3-030-89022-3_22

    Bell, A., Fairbrother, M., & Jones, K. (2019). Fixed and random effects models: Making an informed choice. Qual Quant, 53(2), 1051–1074. 10.1007/s11135-018-0802-x

    Bellec, G., Scherr, F., Subramoney, A., Hajek, E., Salaj, D., Legenstein, R., & Maass, W. (2020). A solution to the learning dilemma for recurrent networks of spiking neurons. Nat Commun, 11(1), 3625. 10.1038/s41467-020-17236-y

    Benavides-Piccione, R., Regalado-Reyes, M., Fernaud-Espinosa, I., Kastanauskaite, A., Tapia-González, S., León-Espinosa, G., Rojo, C., Insausti, R., Segev, I., & DeFelipe, J. (2020). Differential structure of hippocampal CA1 pyramidal neurons in the human and mouse. Cereb Cortex, 30(2), 730–752. 10.1093/cercor/bhz122

    Benton, M. L., Abraham, A., LaBella, A. L., Abbot, P., Rokas, A., & Capra, J. A. (2021). The influence of evolutionary history on human health and disease. Nat Rev Genet, 22(5), 269–283. 10.1038/s41576-020-00305-9

    Berg, J., Sorensen, S. A., Ting, J. T., Miller, J. A., Chartrand, T., Buchin, A., Bakken, T. E., Budzillo, A., Dee, N., Ding, S. L., Gouwens, N. W., Hodge, R. D., Kalmbach, B., Lee, C., Lee, B. R., Alfiler, L., Baker, K., Barkan, E., Beller, A., … Lein, E. S. (2021). Human neocortical expansion involves glutamatergic neuron diversification. Nature, 598(7879), 151–158. 10.1038/s41586-021-03813-8

    Bicanski, A., & Burgess, N. (2018). A neural-level model of spatial memory and imagery. eLife, 7, e33752. 10.7554/eLife.33752

    Booklet | Brain-inspired intelligent robotics: The intersection of robotics and neuroscience sciences. (2016). Science, 354(6318), 1445–1445. 10.1126/science.354.6318.1445-b

    Borner, T., Geisler, C. E., Fortin, S. M., Cosgrove, R., Alsina-Fernandez, J., Dogra, M., Doebley, S., Sanchez-Navarro, M. J., Leon, R. M., Gaisinsky, J., White, A., Bamezai, A., Ghidewon, M. Y., Grill, H. J., Crist, R. C., Reiner, B. C., Ai, M., Samms, R. J., De Jonghe, B. C., & Hayes, M. R. (2021). GIP receptor agonism attenuates GLP-1 receptor agonist–induced nausea and emesis in preclinical models. Diabetes, 70(11), 2545–2553. 10.2337/db21-0459

    Botvinik-Nezer, R., Holzmeister, F., Camerer, C. F., Dreber, A., Huber, J., Johannesson, M., Kirchler, M., Iwanir, R., Mumford, J. A., Adcock, R. A., Avesani, P., Baczkowski, B. M., Bajracharya, A., Bakst, L., Ball, S., Barilari, M., Bault, N., Beaton, D., Beitner, J., … Schonberg, T. (2020). Variability in the analysis of a single neuroimaging dataset by many teams. Nature, 582(7810), 84–88. 10.1038/s41586-020-2314-9

    Brainard, M. S., & Doupe, A. J. (2002). What songbirds teach us about learning. Nature, 417(6886), 351–358. 10.1038/417351a

    Brama, H., Guberman, S., Abeles, M., Stern, E., & Kanter, I. (2015). Synchronization among neuronal pools without common inputs: In vivo study. Brain Struct Funct, 220(6), 3721–3731. 10.1007/s00429-014-0886-6

    Brauner, P., Dalibor, M., Jarke, M., Kunze, I., Koren, I., Lakemeyer, G., Liebenberg, M., Michael, J., Pennekamp, J., Quix, C., Rumpe, B., Aalst, W. v. d., Wehrle, K., Wortmann, A., & Ziefle, M. (2022). A computer science perspective on digital transformation in production. ACM Trans Internet Things, 3(2), Article 15. 10.1145/3502265

    Breakspear, M. (2017). Dynamic models of large-scale brain activity. Nat Neurosci, 20(3), 340–352. 10.1038/nn.4497

    Brenner, S. (2003). Nobel lecture. Nature’s gift to science. Biosci Rep, 23(5–6), 225–237. 10.1023/b:bire.0000019186.48208.f3

    Brenowitz, E. A., Margoliash, D., & Nordeen, K. W. (1997). An introduction to birdsong and the avian song system. J Neurobiol, 33(5), 495–500. /9369455/

    Brenowitz, E. A., & Zakon, H. H. (2015). Emerging from the bottleneck: Benefits of the comparative approach to modern neuroscience. Trends Neurosci, 38(5), 273–278. 10.1016/j.tins.2015.02.008

    Brodmann, K. (1909). Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Barth. works/vrnkkxtj

    Buzsáki, G. (2019). The brain from inside out. Oxford Academic. 10.1093/oso/9780190905385.001.0001

    Callaway, E., Dong, H.-W., Ecker, J., Hawrylycz, M., Huang, J., Lein, E., Ngai, J., Osten, P., Ren, B., Tolias, A., White, O., Zeng, H., Zhuang, X., Ascoli, G., Behrens, M., Chun, J., Feng, G., Gee, J., Ghosh, S., & Sunkin, S. (2021). A multimodal cell census and atlas of the mammalian primary motor cortex. Nature, 598, 86–102. 10.1038/s41586-021-03950-0

    Capone, C., Pastorelli, E., Golosio, B., & Paolucci, P. S. (2019). Sleep-like slow oscillations improve visual classification through synaptic homeostasis and memory association in a thalamo-cortical model. Sci Rep, 9(1), 8990. 10.1038/s41598-019-45525-0

    Cardin, J. A., Crair, M. C., & Higley, M. J. (2020). Mesoscopic imaging: Shining a wide light on large-scale neural dynamics. Neuron, 108(1), 33–43. 10.1016/j.neuron.2020.09.031

    Carlsson, A., Hillarp, N.-Å., & Hoükfelt, B. (1957). The concomitant release of adenosine triphosphate and catechol amines from the adrenal medulla. J Biol Chem, 227, 243–252. 10.1016/S0021-9258(18)70811-9

    Chalmers, D. (1995). Facing up to the problem of consciousness. J Conscious Stud, 2(3), 200–219. papers/facing.pdf

    Chartrand, T., Dalley, R., Close, J., Goriounova, N. A., Lee, B. R., Mann, R., Miller, J. A., Molnar, G., Mukora, A., Alfiler, L., Baker, K., Bakken, T. E., Berg, J., Bertagnolli, D., Braun, T., Brouner, K., Casper, T., Csajbok, E. A., Dee, N., … Lein, E. S. (2023). Morphoelectric and tranomic divergence of the layer 1 interneuron repertoire in human versus mouse neocortex. Science, 382(6667), eadf0805. 10.1126/science.adf0805

    Charvet, C., Ofori, K., Falcone, C., & Rigby-Dames, B. (2022). Tranion, structure, and organoids translate time across the lifespan of humans and great apes. bioRxiv. 10.1101/2022.10.28.513899

    Charvet, C. J. (2021). Cutting across structural and tranomic scales translates time across the lifespan in humans and chimpanzees. Proc R Soc B Biol Sci, 288(1944), 20202987. 10.1098/rspb.2020.2987

    Chen, X., Wang, F., Fernandez, E., & Roelfsema, P. R. (2020). Shape perception via a high-channel-count neuroprosthesis in monkey visual cortex. Science, 370(6521), 1191–1196. 10.1126/science.abd7435

    Choudhury, S., Fishman, J. R., McGowan, M. L., & Juengst, E. T. (2014). Big data, open science and the brain: Lessons learned from genomics. Front Hum Neurosci, 8, 239. 10.3389/fnhum.2014.00239

    Chung, S., & Abbott, L. F. (2021). Neural population geometry: An approach for understanding biological and artificial neural networks. Curr Opin Neurobiol, 70, 137–144. 10.1016/j.conb.2021.10.010

    Churchland, M. M., Cunningham, J. P., Kaufman, M. T., Foster, J. D., Nuyujukian, P., Ryu, S. I., & Shenoy, K. V. (2012). Neural population dynamics during reaching. Nature, 487(7405), 51–56. 10.1038/nature11129

    Colquitt, B. M., Merullo, D. P., Konopka, G., Roberts, T. F., & Brainard, M. S. (2021). Cellular tranomics reveals evolutionary identities of songbird vocal circuits. Science, 371(6530). 10.1126/science.abd9704

    Cramer, B., Billaudelle, S., Kanya, S., Leibfried, A., Grübl, A., Karasenko, V., Pehle, C., Schreiber, K., Stradmann, Y., Weis, J., Schemmel, J., & Zenke, F. (2022). Surrogate gradients for analog neuromorphic computing. Proc Natl Acad Sci U S A, 119(4), e2109194119. doi:10.1073/pnas.2109194119

    Cramer, B., Stöckel, D., Kreft, M., Wibral, M., Schemmel, J., Meier, K., & Priesemann, V. (2020). Control of criticality and computation in spiking neuromorphic networks with plasticity. Nat Commun, 11(1), 2853. 10.1038/s41467-020-16548-3

    Croxson, P. L., Forkel, S. J., Cerliani, L., & Thiebaut de Schotten, M. (2018). Structural variability across the primate brain: A cross-species comparison. Cereb Cortex, 28(11), 3829–3841. 10.1093/cercor/bhx244

    Dale, H. H., Feldberg, W., & Vogt, M. (1936). Release of acetylcholine at voluntary motor nerve endings. J Physiol, 86(4), 353–380. 10.1113/jphysiol.1936.sp003371

    Dalla Porta, L., Barbero-Castillo, A., Sanchez-Sanchez, J. M., & Sanchez-Vives, M. V. (2023). M-current modulation of cortical slow oscillations: Network dynamics and computational modeling. PLoS Comput Biol, 19(7), e1011246. 10.1371/journal.pcbi.1011246

    Dayan, I., Roth, H. R., Zhong, A., Harouni, A., Gentili, A., Abidin, A. Z., Liu, A., Costa, A. B., Wood, B. J., Tsai, C. S., Wang, C. H., Hsu, C. N., Lee, C. K., Ruan, P., Xu, D., Wu, D., Huang, E., Kitamura, F. C., Lacey, G., … Li, Q. (2021). Federated learning for predicting clinical outcomes in patients with COVID-19. Nat Med, 27(10), 1735–1743. 10.1038/s41591-021-01506-3

    Dayan, P. (2012). Twenty-five lessons from computational neuromodulation. Neuron, 76(1), 240–256. 10.1016/j.neuron.2012.09.027

    Deco, G., Cruzat, J., Cabral, J., Knudsen, G. M., Carhart-Harris, R. L., Whybrow, P. C., Logothetis, N. K., & Kringelbach, M. L. (2018). Whole-brain multimodal neuroimaging model using serotonin receptor maps explains non-linear functional effects of LSD. Curr Biol, 28(19), 3065–3074.e3066. 10.1016/j.cub.2018.07.083

    Deco, G., Jirsa, V. K., & McIntosh, A. R. (2011). Emerging concepts for the dynamical organization of resting-state activity in the brain. Nat Rev Neurosci, 12(1), 43–56. 10.1038/nrn2961

    DeFelipe, J. (2009). Cajal’s butterflies of the soul: Science and art. Oxford University Press. 10.1093/acprof:oso/9780195392708.001.0001

    Dehaene, S., Lau, H., & Kouider, S. (2017). What is consciousness, and could machines have it? Science, 358(6362), 486–492. 10.1126/science.aan8871

    Dehaene, S., Meyniel, F., Wacongne, C., Wang, L., & Pallier, C. (2015). The neural representation of sequences: From transition probabilities to algebraic patterns and linguistic trees. Neuron, 88(1), 2–19. 10.1016/j.neuron.2015.09.019

    Demertzi, A., Tagliazucchi, E., Dehaene, S., Deco, G., Barttfeld, P., Raimondo, F., Martial, C., Fernández-Espejo, D., Rohaut, B., Voss, H. U., Schiff, N. D., Owen, A. M., Laureys, S., Naccache, L., & Sitt, J. D. (2019). Human consciousness is supported by dynamic complex patterns of brain signal coordination. Sci Adv, 5(2), eaat7603. 10.1126/sciadv.aat7603

    Demirtaş, M., Burt, J. B., Helmer, M., Ji, J. L., Adkinson, B. D., Glasser, M. F., Van Essen, D. C., Sotiropoulos, S. N., Anticevic, A., & Murray, J. D. (2019). Hierarchical heterogeneity across human cortex shapes large-scale neural dynamics. Neuron, 101(6), 1181–1194.e1113. 10.1016/j.neuron.2019.01.017

    Deperrois, N., Petrovici, M. A., Senn, W., & Jordan, J. (2022). Learning cortical representations through perturbed and adversarial dreaming. eLife, 11, e76384. 10.7554/eLife.76384

    Deubner, J., Coulon, P., & Diester, I. (2019). Optogenetic approaches to study the mammalian brain. Curr Opin Struct Biol, 57, 157–163. 10.1016/j.sbi.2019.04.003

    Devinsky, O., Patel, A. D., Cross, J. H., Villanueva, V., Wirrell, E. C., Privitera, M., Greenwood, S. M., Roberts, C., Checketts, D., VanLandingham, K. E., & Zuberi, S. M. (2018). Effect of cannabidiol on drop seizures in the lennox–gastaut syndrome. N Engl J Med, 378(20), 1888–1897. 10.1056/NEJMoa1714631

    Di Maio, P. (2021). System level knowledge representation for metacognition in neuroscience. In Brain Informatics: 14th International Conference, BI 2021, Virtual Event, September 17–19, 2021, Proceedings. 10.1007/978-3-030-86993-9_8

    Diamond, A., Schmuker, M., & Nowotny, T. (2019). An unsupervised neuromorphic clustering algorithm. Biol Cybern, 113(4), 423–437. 10.1007/s00422-019-00797-7

    Donaldson, D. R., & Koepke, J. W. (2022). A focus groups study on data sharing and research data management. Sci Data, 9(1), 345. 10.1038/s41597-022-01428-w

    Dora, S., Bohte, S. M., & Pennartz, C. M. A. (2021). Deep gated hebbian predictive coding accounts for emergence of complex neural response properties along the visual cortical hierarchy. Front Comput Neurosci, 15, 666131. 10.3389/fncom.2021.666131

    Dotson, V. M., & Duarte, A. (2020). The importance of diversity in cognitive neuroscience. Ann N Y Acad Sci, 1464(1), 181–191. 10.1111/nyas.14268

    Douglas, R. J., & Martin, K. A. (2007). Recurrent neuronal circuits in the neocortex. Curr Biol, 17(13), R496–500. 10.1016/j.cub.2007.04.024

    Ebitz, R. B., & Hayden, B. Y. (2021). The population doctrine in cognitive neuroscience. Neuron, 109(19), 3055–3068. 10.1016/j.neuron.2021.07.011

    Einevoll, G. T., Destexhe, A., Diesmann, M., Grün, S., Jirsa, V., de Kamps, M., & Schürmann, F. (2019). The scientific case for brain simulations. Neuron, 102(4), 735–744. 10.1016/j.neuron.2019.03.027

    Eke, D. O., Bernard, A., Bjaalie, J. G., Chavarriaga, R., Hanakawa, T., Hannan, A. J., Hill, S. L., Martone, M. E., McMahon, A., Ruebel, O., Crook, S., Thiels, E., & Pestilli, F. (2022). International data governance for neuroscience. Neuron, 110(4), 600–612. 10.1016/j.neuron.2021.11.017

    El Houssaini, K., Bernard, C., & Jirsa, V. K. (2020). The epileptor model: A systematic mathematical analysis linked to the dynamics of seizures, refractory status epilepticus, and depolarization block. eNeuro, 7(2). 10.1523/eneuro.0485-18.2019

    Emery, N. J. (2006). Cognitive ornithology: The evolution of avian intelligence. Philos Trans R Soc Lond B Biol Sci, 361(1465), 23–43. 10.1098/rstb.2005.1736

    Emiliani, V., Entcheva, E., Hedrich, R., Hegemann, P., Konrad, K. R., Lüscher, C., Mahn, M., Pan, Z.-H., Sims, R. R., Vierock, J., & Yizhar, O. (2022). Optogenetics for light control of biological systems. Nat Rev Methods Primers, 2(1), 55. 10.1038/s43586-022-00136-4

    Eriksson, O., Bhalla, U. S., Blackwell, K. T., Crook, S. M., Keller, D., Kramer, A., Linne, M.-L., Saudargienė, A., Wade, R. C., & Hellgren Kotaleski, J. (2022). Combining hypothesis- and driven neuroscience modeling in FAIR workflows. eLife, 11, e69013. 10.7554/eLife.69013

    Evers, K., & Salles, A. (2021). Epistemic challenges of digital twins & virtual brains: Perspectives from fundamental neuroethics. SCIO J Philos, 21, 27–53. 10.46583/scio_2021.21.846

    Evers, K., & Sigman, M. (2013). Possibilities and limits of mind-reading: A neurophilosophical perspective. Conscious Cogn, 22(3), 887–897. 10.1016/j.concog.2013.05.011

    Eyal, G., Verhoog, M. B., Testa-Silva, G., Deitcher, Y., Benavides-Piccione, R., DeFelipe, J., de Kock, C. P. J., Mansvelder, H. D., & Segev, I. (2018). Human cortical pyramidal neurons: From spines to spikes via models. Front Cell Neurosci, 12, 181. 10.3389/fncel.2018.00181

    Fang, R., Xia, C., Close, J. L., Zhang, M., He, J., Huang, Z., Halpern, A. R., Long, B., Miller, J. A., Lein, E. S., & Zhuang, X. (2022). Conservation and divergence of cortical cell organization in human and mouse revealed by MERFISH. Science, 377(6601), 56–62. 10.1126/science.abm1741

    Faskowitz, J., Betzel, R. F., & Sporns, O. (2022). Edges in brain networks: Contributions to models of structure and function. Network Neurosci, 6(1), 1–28. 10.1162/netn_a_00204

    Feigin, V. L., Nichols, E., Alam, T., Bannick, M. S., Beghi, E., Blake, N., Culpepper, W. J., Dorsey, E. R., Elbaz, A., Ellenbogen, R. G., Fisher, J. L., Fitzmaurice, C., Giussani, G., Glennie, L., James, S. L., Johnson, C. O., Kassebaum, N. J., Logroscino, G., Marin, B., … Vos, T. (2019). Global, regional, and national burden of neurological disorders, 1990–2016: A systematic analysis for the global burden of disease study 2016. Lancet Neurol, 18(5), 459–480. 10.1016/S1474-4422(18)30499-X

    Felleman, D. J., & Van Essen, D. C. (1991). Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex, 1(1), 1–47. 10.1093/cercor/1.1.1-a

    Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39(4), 783–791. 10.1111/j.1558-5646.1985.tb00420.x

    Finger, S. (1994). Origins of neuroscience: A history of explorations into brain function. Oxford University Press. 10.1097/00005072-199409000-00015

    Fothergill, B. T., Knight, W., Stahl, B. C., & Ulnicane, I. (2019). Responsible data governance of neuroscience big data. Front Neuroinform, 13, 28. 10.3389/fninf.2019.00028

    Frank, M. J., Samanta, J., Moustafa, A. A., & Sherman, S. J. (2007). Hold your horses: Impulsivity, deep brain stimulation, and medication in parkinsonism. Science, 318(5854), 1309–1312. 10.1126/science.1146157

    Frank, M. J., Seeberger, L. C., & O’Reilly, R.C. (2004). By carrot or by stick: Cognitive reinforcement learning in parkinsonism. Science, 306(5703), 1940–1943. 10.1126/science.1102941

    Friedrich, P., Forkel, S. J., Amiez, C., Balsters, J. H., Coulon, O., Fan, L., Goulas, A., Hadj-Bouziane, F., Hecht, E. E., Heuer, K., Jiang, T., Latzman, R. D., Liu, X., Loh, K. K., Patil, K. R., Lopez-Persem, A., Procyk, E., Sallet, J., Toro, R., … Thiebaut de Schotten, M. (2021). Imaging evolution of the primate brain: The next frontier? Neuroimage, 228, 117685. 10.1016/j.neuroimage.2020.117685

    Friston, K., Kilner, J., & Harrison, L. (2006). A free energy principle for the brain. J Physiol Paris, 100(1), 70–87. 10.1016/j.jphysparis.2006.10.001

    Furber, S. B., & Bogdan, P. A. (2020). SpiNNaker: A spiking neural network architecture. 10.1561/9781680836523

    Fuzik, J., Zeisel, A., Máté, Z., Calvigioni, D., Yanagawa, Y., Szabó, G., Linnarsson, S., & Harkany, T. (2016). Integration of electrophysiological recordings with single-cell RNA-seq data identifies neuronal subtypes. Nat Biotechnol, 34(2), 175–183. 10.1038/nbt.3443

    Gerits, A., Farivar, R., Rosen, B. R., Wald, L. L., Boyden, E. S., & Vanduffel, W. (2012). Optogenetically induced behavioral and functional network changes in primates. Curr Biol, 22(18), 1722–1726. 10.1016/j.cub.2012.07.023

    Gillette, K., Gsell, M. A. F., Prassl, A. J., Karabelas, E., Reiter, U., Reiter, G., Grandits, T., Payer, C., Štern, D., Urschler, M., Bayer, J. D., Augustin, C. M., Neic, A., Pock, T., Vigmond, E. J., & Plank, G. (2021). A framework for the generation of digital twins of cardiac electrophysiology from clinical 12-leads ECGs. Med Image Anal, 71, 102080. 10.1016/j.media.2021.102080

    Goldfarb, M. G., & Brown, D. R. (2022). Diversifying participation: The rarity of reporting racial demographics in neuroimaging research. Neuroimage, 254, 119122. 10.1016/j.neuroimage.2022.119122

    Göltz, J., Kriener, L., Baumbach, A., Billaudelle, S., Breitwieser, O., Cramer, B., Dold, D., Kungl, A. F., Senn, W., Schemmel, J., Meier, K., & Petrovici, M. A. (2021). Fast and energy-efficient neuromorphic deep learning with first-spike times. Nat Mach Intell, 3(9), 823–835. 10.1038/s42256-021-00388-x

    Gombkoto, P., Gielow, M., Varsanyi, P., Chavez, C., & Zaborszky, L. (2021). Contribution of the basal forebrain to corticocortical network interactions. Brain Struct Funct, 226(6), 1803–1821. 10.1007/s00429-021-02290-z

    Gouwens, N. W., Sorensen, S. A., Baftizadeh, F., Budzillo, A., Lee, B. R., Jarsky, T., Alfiler, L., Baker, K., Barkan, E., Berry, K., Bertagnolli, D., Bickley, K., Bomben, J., Braun, T., Brouner, K., Casper, T., Crichton, K., Daigle, T. L., Dalley, R., … Zeng, H. (2020). Integrated morphoelectric and tranomic classification of cortical GABAergic cells. Cell, 183(4), 935–953.e919. 10.1016/j.cell.2020.09.057

    Gray, C. M., König, P., Engel, A. K., & Singer, W. (1989). Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature, 338(6213), 334–337. 10.1038/338334a0

    Graziano, M. S. (2019). Rethinking consciousness: A scientific theory of subjective experience. W. W. Norton ISBN: 978-0393652611.

    Grieves, M., & Vickers, J. (2017). Digital twin: Mitigating unpredictable, undesirable emergent behavior in complex systems. (pp. 85–113). ISBN : 978-3-319-38754-3

    Grieves, M. W. (2019). Virtually intelligent product systems: Digital and physical twins. In Complex systems engineering: theory and practice. American Institute of Aeronautics and Astronautics. 10.2514/5.9781624105654.0175.0200

    Gunn-Moore, D., Moffat, K., Christie, L. A., & Head, E. (2007). Cognitive dysfunction and the neurobiology of ageing in cats. J Small Anim Pract, 48(10), 546–553. 10.1111/j.1748-5827.2007.00386.x

    Güntürkün, O., & Bugnyar, T. (2016). Cognition without cortex. Trends Cogn Sci, 20(4), 291–303. 10.1016/j.tics.2016.02.001

    Gunz, P., Tilot, A. K., Wittfeld, K., Teumer, A., Shapland, C. Y., van Erp, T. G. M., Dannemann, M., Vernot, B., Neubauer, S., Guadalupe, T., Fernández, G., Brunner, H. G., Enard, W., Fallon, J., Hosten, N., Völker, U., Profico, A., Di Vincenzo, F., Manzi, G., … Fisher, S. E. (2019). Neandertal introgression sheds light on modern human endocranial globularity. Curr Biol, 29(1), 120–127.e125. 10.1016/j.cub.2018.10.065

    Haider, P., Ellenberger, B., Kriener, L., Jordan, J., Senn, W., & Petrovici, M. (2021). Latent equilibrium: A unified learning theory for arbitrarily fast computation with arbitrarily slow neurons. 10.48550/arXiv.2110.14549

    Han, X., Qian, X., Bernstein, J. G., Zhou, H. H., Franzesi, G. T., Stern, P., Bronson, R. T., Graybiel, A. M., Desimone, R., & Boyden, E. S. (2009). Millisecond-timescale optical control of neural dynamics in the nonhuman primate brain. Neuron, 62(2), 191–198. 10.1016/j.neuron.2009.03.011

    Handler, A., Graham, T. G. W., Cohn, R., Morantte, I., Siliciano, A. F., Zeng, J., Li, Y., & Ruta, V. (2019). Distinct dopamine receptor pathways underlie the temporal sensitivity of associative learning. Cell, 178(1), 60–75.e19. 10.1016/j.cell.2019.05.040

    Haueis, P. (2021). Multiscale modeling of cortical gradients: The role of mesoscale circuits for linking macro- and microscale gradients of cortical organization and hierarchical information processing. Neuroimage, 232, 117846. 10.1016/j.neuroimage.2021.117846

    Häusser, M. (2021). Optogenetics—The might of light. N Engl J Med, 385(17), 1623–1626. 10.1056/NEJMcibr2111915

    Havlicek, M., Roebroeck, A., Friston, K., Gardumi, A., Ivanov, D., & Uludag, K. (2015). Physiologically informed dynamic causal modeling of fMRI data. Neuroimage, 122, 355–372. 10.1016/j.neuroimage.2015.07.078

    Head, E., McCleary, R., Hahn, F. F., Milgram, N. W., & Cotman, C. W. (2000). Region-specific age at onset of beta-amyloid in dogs. Neurobiol Aging, 21(1), 89–96. 10.1016/s0197-4580(00)00093-2

    Head, E., Moffat, K., Das, P., Sarsoza, F., Poon, W. W., Landsberg, G., Cotman, C. W., & Murphy, M. P. (2005). Beta-amyloid deposition and tau phosphorylation in clinically characterized aged cats. Neurobiol Aging, 26(5), 749–763. 10.1016/j.neurobiolaging.2004.06.015

    Heckner, M. K., Cieslik, E. C., Patil, K. R., Gell, M., Eickhoff, S. B., Hoffstädter, F., & Langner, R. (2023). Predicting executive functioning from functional brain connectivity: Network specificity and age effects. Cereb Cortex. 10.1093/cercor/bhac520

    Herold, C., Bingman, V. P., Ströckens, F., Letzner, S., Sauvage, M., Palomero-Gallagher, N., Zilles, K., & Güntürkün, O. (2014). Distribution of neurotransmitter receptors and zinc in the pigeon (Columba livia) hippocampal formation: A basis for further comparison with the mammalian hippocampus. J Comp Neurol, 522(11), 2553–2575. 10.1002/cne.23549

    Herold, C., Palomero-Gallagher, N., Hellmann, B., Kröner, S., Theiss, C., Güntürkün, O., & Zilles, K. (2011). The receptor architecture of the pigeons’ nidopallium caudolaterale: An avian analogue to the mammalian prefrontal cortex. Brain Struct Funct, 216(3), 239–254. 10.1007/s00429-011-0301-5

    Hodgkin, A. L., & Huxley, A. F. (1952). Currents carried by sodium and potassium ions through the membrane of the giant axon of loligo. J Physiol, 116(4), 449–472. 10.1113/jphysiol.1952.sp004717

    Iturria-Medina, Y., Carbonell, F. M., & Evans, A. C. (2018). Multimodal imaging-based therapeutic fingerprints for optimizing personalized interventions: Application to neurodegeneration. Neuroimage, 179, 40–50. 10.1016/j.neuroimage.2018.06.028

    Jancke, D., Herlitze, S., Kringelbach, M. L., & Deco, G. (2022). Bridging the gap between single receptor type activity and whole-brain dynamics. FEBS J, 289(8), 2067–2084. 10.1111/febs.15855

    Jarvis, E. D. (2004). Learned birdsong and the neurobiology of human language. Ann N Y Acad Sci, 1016, 749–777. 10.1196/annals.1298.038

    Jarvis, E. D. (2019). Evolution of vocal learning and spoken language. Science, 366(6461), 50–54. 10.1126/science.aax0287

    Jirsa, V., & Sheheitli, H. (2022). Entropy, free energy, symmetry and dynamics in the brain. J Physics Complexity, 3(1), 015007. 10.1088/2632-072X/ac4bec

    Jirsa, V., Wang, H., Triebkorn, P., Hashemi, M., Jha, J., Gonzalez-Martinez, J., Guye, M., Makhalova, J., & Bartolomei, F. (2023). Personalised virtual brain models in epilepsy. Lancet Neurol, 22(5), 443–454. 10.1016/s1474-4422(23)00008-x

    Jirsa, V. K., Proix, T., Perdikis, D., Woodman, M. M., Wang, H., Gonzalez-Martinez, J., Bernard, C., Bénar, C., Guye, M., Chauvel, P., & Bartolomei, F. (2017). The virtual epileptic patient: Individualized whole-brain models of epilepsy spread. Neuroimage, 145(Pt B), 377–388. 10.1016/j.neuroimage.2016.04.049

    PubMed

    Jones, E. (1983). The columnar basis of cortical circuitry. Clin Neurosci, 5, 257–383.

    Jonsson, B. A., Bjornsdottir, G., Thorgeirsson, T. E., Ellingsen, L. M., Walters, G. B., Gudbjartsson, D. F., Stefansson, H., Stefansson, K., & Ulfarsson, M. O. (2019). Brain age prediction using deep learning uncovers associated sequence variants. Nat Commun, 10(1), 5409. 10.1038/s41467-019-13163-9

    Jordan, J., Schmidt, M., Senn, W., & Petrovici, M. A. (2021). Evolving interpretable plasticity for spiking networks. eLife, 10, e66273. 10.7554/eLife.66273

    Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., … Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583–589. 10.1038/s41586-021-03819-2

    Karigo, T., Kennedy, A., Yang, B., Liu, M., Tai, D., Wahle, I. A., & Anderson, D. J. (2021). Distinct hypothalamic control of same- and opposite-sex mounting behaviour in mice. Nature, 589(7841), 258–263. 10.1038/s41586-020-2995-0

    Khan, A. F., Adewale, Q., Baumeister, T. R., Carbonell, F., Zilles, K., Palomero-Gallagher, N., & Iturria-Medina, Y. (2022). Personalized brain models identify neurotransmitter receptor changes in Alzheimer’s disease. Brain, 145(5), 1785–1804. 10.1093/brain/awab375

    Kim, C. K., Adhikari, A., & Deisseroth, K. (2017). Integration of optogenetics with complementary methodologies in systems neuroscience. Nat Rev Neurosci, 18(4), 222–235. 10.1038/nrn.2017.15

    爸爸与女儿

    Klausberger, T., & Somogyi, P. (2008). Neuronal diversity and temporal dynamics: The unity of hippocampal circuit operations. Science, 321(5885), 53–57. 10.1126/science.1149381

    Kleckner, I. R., Zhang, J., Touroutoglou, A., Chanes, L., Xia, C., Simmons, W. K., Quigley, K. S., Dickerson, B. C., & Barrett, L. F. (2017). Evidence for a large-scale brain system supporting allostasis and interoception in humans. Nat Hum Behav, 1. 10.1038/s41562-017-0069

    Klink, P. C., Aubry, J.-F., Ferrera, V. P., Fox, A. S., Froudist-Walsh, S., Jarraya, B., Konofagou, E. E., Krauzlis, R. J., Messinger, A., Mitchell, A. S., Ortiz-Rios, M., Oya, H., Roberts, A. C., Roe, A. W., Rushworth, M. F. S., Sallet, J., Schmid, M. C., Schroeder, C. E., Tasserie, J., … Petkov, C. I. (2021). Combining brain perturbation and neuroimaging in non-human primates. Neuroimage, 235, 118017. 10.1016/j.neuroimage.2021.118017

    Kooijmans, R. N., Sierhuis, W., Self, M. W., & Roelfsema, P. R. (2020). A quantitative comparison of inhibitory interneuron size and distribution between mouse and macaque V1, using calcium-binding proteins. Cereb Cortex Commun, 1(1), tgaa068. 10.1093/texcom/tgaa068

    Kreutzer, E., Senn, W., & Petrovici, M. A. (2022). Natural-gradient learning for spiking neurons. eLife, 11, e66526. 10.7554/eLife.66526

    Kringelbach, M. L., Cruzat, J., Cabral, J., Knudsen, G. M., Carhart-Harris, R., Whybrow, P. C., Logothetis, N. K., & Deco, G. (2020). Dynamic coupling of whole-brain neuronal and neurotransmitter systems. Proc Natl Acad Sci U S A, 117(17), 9566–9576. 10.1073/pnas.1921475117

    Kverková, K., Marhounová, L., Polonyiová, A., Kocourek, M., Zhang, Y., Olkowicz, S., Straková, B., Pavelková, Z., Vodička, R., Frynta, D., & Němec, P. (2022). The evolution of brain neuron numbers in amniotes. Proc Natl Acad Sci U S A, 119(11), e2121624119. 10.1073/pnas.2121624119

    Lake, E. M. R., Ge, X., Shen, X., Herman, P., Hyder, F., Cardin, J. A., Higley, M. J., Scheinost, D., Papademetris, X., Crair, M. C., & Constable, R. T. (2020). Simultaneous cortex-wide fluorescence Ca(2+) imaging and whole-brain fMRI. Nat Methods, 17(12), 1262–1271. 10.1038/s41592-020-00984-6

    Lamme, V. A., & Spekreijse, H. (1998). Neuronal synchrony does not represent texture segregation. Nature, 396(6709), 362–366. 10.1038/24608

    Landsberg, G. M., Nichol, J., & Araujo, J. A. (2012). Cognitive dysfunction syndrome: A disease of canine and feline brain aging. Vet Clin North Am Small Anim Pract, 42(4), 749–768, vii. 10.1016/j.cvsm.2012.04.003

    Larkum, M. E., Petro, L. S., Sachdev, R. N. S., & Muckli, L. (2018). A perspective on cortical layering and layer-spanning neuronal elements. Front Neuroanat, 12. 10.3389/fnana.2018.00056

    Le Van Quyen, M., Muller, L. E., 2nd, Telenczuk, B., Halgren, E., Cash, S., Hatsopoulos, N. G., Dehghani, N., & Destexhe, A. (2016). High-frequency oscillations in human and monkey neocortex during the wake-sleep cycle. Proc Natl Acad Sci U S A, 113(33), 9363–9368. 10.1073/pnas.1523583113

    Lee, B. R., Dalley, R., Miller, J. A., Chartrand, T., Close, J., Mann, R., Mukora, A., Ng, L., Alfiler, L., Baker, K., Bertagnolli, D., Brouner, K., Casper, T., Csajbok, E., Donadio, N., Driessens, S. L. W., Egdorf, T., Enstrom, R., Galakhova, A. A., … Ting, J. T. (2023). Signature morphoelectric properties of diverse GABAergic interneurons in the human neocortex. Science, 382(6667), eadf6484. 10.1126/science.adf6484

    Lee, M., Sanz, L. R. D., Barra, A., Wolff, A., Nieminen, J. O., Boly, M., Rosanova, M., Casarotto, S., Bodart, O., Annen, J., Thibaut, A., Panda, R., Bonhomme, V., Massimini, M., Tononi, G., Laureys, S., Gosseries, O., & Lee, S. W. (2022). Quantifying arousal and awareness in altered states of consciousness using interpretable deep learning. Nat Commun, 13(1), 1064. 10.1038/s41467-022-28451-0

    Lehtimäki, M., Paunonen, L., & Linne, M. L. (2019). Projection-based order reduction of a nonlinear biophysical neuronal network model. In 2019 IEEE 58th Conference on Decision and Control (CDC). URN:NBN:fi:tuni-202001091136

    Lehtimäki, M., Paunonen, L., Pohjolainen, S., & Linne, M.-L. (2017). Order reduction for a signaling pathway model of neuronal synaptic plasticity. IFAC-PapersOnLine, 50(1), 7687–7692. 10.1016/j.ifacol.2017.08.1143

    Lehtimäki, M., Seppälä, I., Paunonen, L., & Linne, M.-L. (2020). Accelerated simulation of a neuronal population via mathematical model order reduction. In 2020 2nd IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS) (pp. 118–122). IEEE. 10.1109/AICAS48895.2020.9073844

    Li, F., Lindsey, J. W., Marin, E. C., Otto, N., Dreher, M., Dempsey, G., Stark, I., Bates, A. S., Pleijzier, M. W., Schlegel, P., Nern, A., Takemura, S. Y., Eckstein, N., Yang, T., Francis, A., Braun, A., Parekh, R., Costa, M., Scheffer, L. K., … Rubin, G. M. (2020). The connectome of the adult Drosophila mushroom body provides insights into function. eLife, 9, e62576. 10.7554/eLife.62576

    Li, N., Chen, T. W., Guo, Z. V., Gerfen, C. R., & Svoboda, K. (2015). A motor cortex circuit for motor planning and movement. Nature, 519(7541), 51–56. 10.1038/nature14178

    Ligthart, S., Douglas, T., Bublitz, C., Kooijmans, T., & Meynen, G. (2021). Forensic brain-reading and mental privacy in European human rights law: Foundations and challenges. Neuroethics, 14(2), 191–203. 10.1007/s12152-020-09438-4

    Lisman, J., Buzsáki, G., Eichenbaum, H., Nadel, L., Ranganath, C., & Redish, A. D. (2017). Viewpoints: How the hippocampus contributes to memory, navigation and cognition. Nat Neurosci, 20(11), 1434–1447. 10.1038/nn.4661

    Litvina, E., Adams, A., Barth, A., Bruchez, M., Carson, J., Chung, J. E., Dupre, K. B., Frank, L. M., Gates, K. M., Harris, K. M., Joo, H., William Lichtman, J., Ramos, K. M., Sejnowski, T., Trimmer, J. S., White, S., & Koroshetz, W. (2019). BRAIN initiative: Cutting-edge tools and resources for the community. J Neurosci, 39(42), 8275–8284. 10.1523/jneurosci.1169-19.2019

    Maestú, F., de Haan, W., Busche, M. A., & DeFelipe, J. (2021). Neuronal excitation/inhibition imbalance: Core element of a translational perspective on Alzheimer pathophysiology. Ageing Res Rev, 69, 101372. 10.1016/j.arr.2021.101372

    Magielse, N., Toro, R., Steigauf, V., Abbaspour, M., Eickhoff, S. B., Heuer, K., & Valk, S. L. (2023). Primate cerebellar scaling in connection to the cerebrum: A 34-species phylogenetic comparative analysis. bioRxiv, 2023.2003.2015.532597. 10.1101/2023.03.15.532597

    Mäki-Marttunen, T., Kaufmann, T., Elvsåshagen, T., Devor, A., Djurovic, S., Westlye, L. T., Linne, M.-L., Rietschel, M., Schubert, D., Borgwardt, S., Efrim-Budisteanu, M., Bettella, F., Halnes, G., Hagen, E., Næss, S., Ness, T. V., Moberget, T., Metzner, C., Edwards, A. G., … Andreassen, O. A. (2019). Biophysical psychiatry—How computational neuroscience can help to understand the complex mechanisms of mental disorders. Front Psychiatry, 10, 534. 10.3389/fpsyt.2019.00534

    Manninen, T., Saudargiene, A., & Linne, M.-L. (2020). Astrocyte-mediated spike-timing-dependent long-term depression modulates synaptic properties in the developing cortex. PLoS Comput Biol, 16(11), e1008360. 10.1371/journal.pcbi.1008360

    Mante, V., Sussillo, D., Shenoy, K. V., & Newsome, W. T. (2013). Context-dependent computation by recurrent dynamics in prefrontal cortex. Nature, 503(7474), 78–84. 10.1038/nature12742

    Marceglia, S., Guidetti, M., Harmsen, I. E., Loh, A., Meoni, S., Foffani, G., Lozano, A. M., Volkmann, J., Moro, E., & Priori, A. (2021). Deep brain stimulation: Is it time to change gears by closing the loop? J Neural Eng, 18(6). 10.1088/1741-2552/ac3267

    Marder, E., Kedia, S., & Morozova, E. O. (2022). New insights from small rhythmic circuits. Curr Opin Neurobiol, 76, 102610. 10.1016/j.conb.2022.102610

    Markram, H., Meier, K., Lippert, T., Grillner, S., Frackowiak, R., Dehaene, S., Knoll, A., Sompolinsky, H., Verstreken, K., DeFelipe, J., Grant, S., Changeux, J.-P., & Saria, A. (2011). Introducing the human brain project. Procedia Computer Sci, 7, 39–42. 10.1016/j.procs.2011.12.015

    Marr, D. (1982). Vision. Freeman.

    Masoli, S., Ottaviani, A., Casali, S., & D’Angelo, E. (2021). Cerebellar golgi cell models predict dendritic processing and mechanisms of synaptic plasticity. PLoS Computat Biol, 16(12), e1007937. 10.1371/journal.pcbi.1007937

    Mazzarello, P. (2010). Golgi: A biography of the founder of modern neuroscience. Oxford University Press, USA. ISBN: 978-0195337846

    Mejias, J. F., Murray, J. D., Kennedy, H., & Wang, X. J. (2016). Feedforward and feedback frequency-dependent interactions in a large-scale laminar network of the primate cortex. Sci Adv, 2(11), e1601335. 10.1126/sciadv.1601335

    Mejías, J. F., & Wang, X.-J. (2022). Mechanisms of distributed working memory in a large-scale network of macaque neocortex. eLife, 11, e72136. 10.7554/eLife.72136

    Mesulam, M. M. (1998). From sensation to cognition. Brain, 121(6), 1013–1052. 10.1093/brain/121.6.1013

    Montero-Crespo, M., Dominguez-Alvaro, M., Rondon-Carrillo, P., Alonso-Nanclares, L., DeFelipe, J., & Blazquez-Llorca, L. (2020). Three-dimensional synaptic organization of the human hippocampal CA1 field. eLife, 9. 10.7554/eLife.57013

    Mountcastle, V. B. (1997). The columnar organization of the neocortex. Brain, 120 (Pt 4), 701–722. 10.1093/brain/120.4.701

    Nadasdy, Z., Buzsaki, G., & Zaborszky, L. (2006). Functional connectivity of the brain: Reconstruction from static and dynamic data. In L. Zaborszky, F. G. Wouterlood, & J. L. Lanciego (Eds.), Neuroanatomical tract-tracing 3: Molecules, neurons, and systems (pp. 631–681). Springer US. 10.1007/0-387-28942-9_20

    Northoff, G., Wainio-Theberge, S., & Evers, K. (2020). Is temporo-spatial dynamics the “common currency” of brain and mind? In quest of “spatiotemporal neuroscience”. Phys Life Rev, 33, 34–54. 10.1016/j.plrev.2019.05.002

    Nottebohm, F. (2005). The neural basis of birdsong. PLoS Biol, 3(5), e164. 10.1371/journal.pbio.0030164

    Olesen, J., Gustavsson, A., Svensson, M., Wittchen, H. U., & Jönsson, B. (2012). The economic cost of brain disorders in Europe. Eur J Neurol, 19(1), 155–162. 10.1111/j.1468-1331.2011.03590.x

    Oude Lohuis, M. N., Pie, J. L., Marchesi, P., Montijn, J. S., de Kock, C. P. J., Pennartz, C. M. A., & Olcese, U. (2022). Multisensory task demands temporally extend the causal requirement for visual cortex in perception. Nat Commun, 13(1), 2864. 10.1038/s41467-022-30600-4

    Palomero-Gallagher, N., & Zilles, K. (2019). Cortical layers: Cyto-, myelo-, receptor- and synaptic architecture in human cortical areas. Neuroimage, 197, 716–741. 10.1016/j.neuroimage.2017.08.035

    Pandya, D., Seltzer, B., Petrides, M., & Cipolloni, P. B. (2015). 377Bibliography. In Cerebral Cortex: Architecture, Connections, and the Dual Origin Concept (pp. 0). Oxford University Press. ISBN: 978-0195385151

    Parr, T., Pezzulo, G., & Friston, K. (2022). Active inference: The free energy principle in mind, brain, and behavior. The MIT Press. 10.7551/mitpress/12441.001.0001

    Parr, T., Rees, G., & Friston, K. J. (2018). Computational neuropsychology and Bayesian inference. Front Hum Neurosci, 12, 61. 10.3389/fnhum.2018.00061

    Pearson, M. J., Dora, S., Struckmeier, O., Knowles, T. C., Mitchinson, B., Tiwari, K., Kyrki, V., Bohte, S., & Pennartz, C. M. A. (2021). Multimodal representation learning for place recognition using deep hebbian predictive coding. Front Robot AI, 8, 732023. 10.3389/frobt.2021.732023

    Poort, J., Raudies, F., Wannig, A., Lamme, V. A., Neumann, H., & Roelfsema, P. R. (2012). The role of attention in figure-ground segregation in areas V1 and V4 of the visual cortex. Neuron, 75(1), 143–156. 10.1016/j.neuron.2012.04.032

    Proix, T., Bartolomei, F., Guye, M., & Jirsa, V. K. (2017). Individual brain structure and modelling predict seizure propagation. Brain, 140, 641–654. 10.1093/brain/awx004

    Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proc Natl Acad Sci U S A, 98(2), 676–682. doi:10.1073/pnas.98.2.676

    Rastegar, S., & Strähle, U. (2016). The zebrafish as model for deciphering the regulatory architecture of vertebrate genomes. Adv Genet, 95, 195–216. 10.1016/bs.adgen.2016.04.003

    Ren, C., & Komiyama, T. (2021a). Characterizing cortex-wide dynamics with wide-field calcium imaging. J Neurosci, 41(19), 4160–4168. 10.1523/jneurosci.3003-20.2021

    Ren, C., & Komiyama, T. (2021b). Wide-field calcium imaging of cortex-wide activity in awake, head-fixed mice. STAR Protoc, 2(4), 100973. 10.1016/j.xpro.2021.100973

    Rockland, K. S. (2010). Five points on columns. Front Neuroanat, 4, 22. 10.3389/fnana.2010.00022

    Rockland, K. S. (2022). Clustered intrinsic connections: Not a single system. Front Syst Neurosci, 16, 910845. 10.3389/fnsys.2022.910845

    Roelfsema, P. R., Lamme, V. A., & Spekreijse, H. (1998). Object-based attention in the primary visual cortex of the macaque monkey. Nature, 395(6700), 376–381. 10.1038/26475

    Roelfsema, P. R., Lamme, V. A., & Spekreijse, H. (2004). Synchrony and covariation of firing rates in the primary visual cortex during contour grouping. Nat Neurosci, 7(9), 982–991. 10.1038/nn1304

    Rosanova, M., Fecchio, M., Casarotto, S., Sarasso, S., Casali, A. G., Pigorini, A., Comanducci, A., Seregni, F., Devalle, G., Citerio, G., Bodart, O., Boly, M., Gosseries, O., Laureys, S., & Massimini, M. (2018). Sleep-like cortical OFF-periods disrupt causality and complexity in the brain of unresponsive wakefulness syndrome patients. Nat Commun, 9(1), 4427. 10.1038/s41467-018-06871-1

    Rowald, A., & Amft, O. (2022). A computational roadmap to electronic drugs. Front Neurorobot, 16. 10.3389/fnbot.2022.983072

    Rowald, A., Komi, S., Demesmaeker, R., Baaklini, E., Hernandez-Charpak, S. D., Paoles, E., Montanaro, H., Cassara, A., Becce, F., Lloyd, B., Newton, T., Ravier, J., Kinany, N., D’Ercole, M., Paley, A., Hankov, N., Varescon, C., McCracken, L., Vat, M., … Courtine, G. (2022). Activity-dependent spinal cord neuromodulation rapidly restores trunk and leg motor functions after complete paralysis. Nat Med, 28(2), 260–271. 10.1038/s41591-021-01663-5

    Sacramento, J., Costa, R., Bengio, Y., & Senn, W. (2018). Dendritic cortical microcircuits approximate the backpropagation algorithm. 10.48550/arXiv.1810.11393

    Sakmann, B., & Neher, E. (1984). Patch clamp techniques for studying ionic channels in excitable membranes. Annu Rev Physiol, 46, 455–472. 10.1146/annurev.ph.46.030184.002323

    Saxena, S., & Cunningham, J. P. (2019). Towards the neural population doctrine. Curr Opin Neurobiol, 55, 103–111. 10.1016/j.conb.2019.02.002

    Schirner, M., Domide, L., Perdikis, D., Triebkorn, P., Stefanovski, L., Pai, R., Prodan, P., Valean, B., Palmer, J., Langford, C., Blickensdörfer, A., van der Vlag, M., Diaz-Pier, S., Peyser, A., Klijn, W., Pleiter, D., Nahm, A., Schmid, O., Woodman, M., … Ritter, P. (2022). Brain simulation as a cloud service: The virtual brain on EBRAINS. Neuroimage, 251, 118973. 10.1016/j.neuroimage.2022.118973

    Sendhoff, B., Körner, E., Sporns, O., Ritter, H., & Doya, K. (2009). Creating brain-like intelligence: From basic principles to complex intelligent systems (Vol. 5436). Springer. 10.1007/978-3-642-00616-6_1

    Shanahan, M., Bingman, V. P., Shimizu, T., Wild, M., & Güntürkün, O. (2013). Large-scale network organization in the avian forebrain: A connectivity matrix and theoretical analysis. Front Comput Neurosci, 7, 89. 10.3389/fncom.2013.00089

    Shepherd, G. M. (2009). Creating modern neuroscience: The revolutionary 1950s. Oxford University Press. ISBN: 978-0195391503

    Shepherd, G. M. (2015). Foundations of the neuron doctrine. Oxford University Press. ISBN: 978-0190259389

    Stacho, M., Herold, C., Rook, N., Wagner, H., Axer, M., Amunts, K., & Güntürkün, O. (2020). A cortex-like canonical circuit in the avian forebrain. Science, 369(6511), eabc5534. doi:10.1126/science.abc5534

    Stahl, B. C., Akintoye, S., Bitsch, L., Bringedal, B., Eke, D., Farisco, M., Grasenick, K., Guerrero, M., Knight, W., Leach, T., Nyholm, S., Ogoh, G., Rosemann, A., Salles, A., Trattnig, J., & Ulnicane, I. (2021). From responsible research and innovation to responsibility by design. J Responsible Innov, 8(2), 175–198. 10.1080/23299460.2021.1955613

    Staiger, J. F., & Petersen, C. C. H. (2021). Neuronal circuits in barrel cortex for whisker sensory perception. Physiol Rev, 101(1), 353–415. 10.1152/physrev.00019.2019

    Stefanovski, L., Meier, J. M., Pai, R. K., Triebkorn, P., Lett, T., Martin, L., Bülau, K., Hofmann-Apitius, M., Solodkin, A., McIntosh, A. R., & Ritter, P. (2021). Bridging scales in Alzheimer’s disease: Biological framework for brain simulation with the virtual brain. Front Neuroinform, 15, 630172. 10.3389/fninf.2021.630172

    Sterling, E., Pearl, H., Liu, Z., Allen, J. W., & Fleischer, C. C. (2022). Demographic reporting across a decade of neuroimaging: A systematic review. Brain Imaging Behav, 16(6), 2785–2796. 10.1007/s11682-022-00724-8

    Stöckl, C., & Maass, W. (2021). Optimized spiking neurons can classify images with high accuracy through temporal coding with two spikes. Nat Mach Intell, 3(3), 230–238. 10.1038/s42256-021-00311-4

    Stoianov, I. P., Pennartz, C. M. A., Lansink, C. S., & Pezzulo, G. (2018). Model-based spatial navigation in the hippocampus-ventral striatum circuit: A computational analysis. PLoS Comput Biol, 14(9), e1006316. 10.1371/journal.pcbi.1006316

    Ströckens, F., Neves, K., Kirchem, S., Schwab, C., Herculano-Houzel, S., & Güntürkün, O. (2022). High associative neuron numbers could drive cognitive performance in corvid species. J Comp Neurol, 530(10), 1588–1605. 10.1002/cne.25298

    Strubell, E., Ganesh, A., & McCallum, A. (2019). Energy and policy considerations for deep learning in NLP. arXiv, 1906.02243. 10.48550/arXiv.1906.02243

    Südhof, T. C. (2017). Molecular neuroscience in the 21(st) century: A personal perspective. Neuron, 96(3), 536–541. 10.1016/j.neuron.2017.10.005

    Svanera, M., Morgan, A. T., Petro, L. S., & Muckli, L. (2021). A self-supervised deep neural network for image completion resembles early visual cortex fMRI activity patterns for occluded scenes. J Vis, 21(7), 5. 10.1167/jov.21.7.5

    Szentágothai, J. (1978). The Ferrier Lecture, 1977 The neuron network of the cerebral cortex: A functional interpretation. Proc R Soc Lond B Biol Sci, 201(1144), 219–248. 10.1098/rspb.1978.0043

    Talozzi, L., Forkel, S. J., Pacella, V., Nozais, V., Allart, E., Piscicelli, C., Pérennou, D., Tranel, D., Boes, A., Corbetta, M., Nachev, P., & Thiebaut de Schotten, M. (2023). Latent disconnectome prediction of long-term cognitive-behavioural symptoms in stroke. Brain, 146(5), 1963–1978. 10.1093/brain/awad013

    Tao, F., Sui, F., Liu, A., Qi, Q., Zhang, M., Song, B., Guo, Z., Lu, S. C. Y., & Nee, A. Y. C. (2019). Digital twin-driven product design framework. Int J Prod Res, 57(12), 3935–3953. 10.1080/00207543.2018.1443229

    Taylor, N. L., D’Souza, A., Munn, B. R., Lv, J., Zaborszky, L., Müller, E. J., Wainstein, G., Calamante, F., & Shine, J. M. (2022). Structural connections between the noradrenergic and cholinergic system shape the dynamics of functional brain networks. Neuroimage, 260, 119455. 10.1016/j.neuroimage.2022.119455

    Thiebaut de Schotten, M., & Forkel, S. J. (2022). The emergent properties of the connected brain. Science, 378(6619), 505–510. 10.1126/science.abq2591

    Thiele, A., & Stoner, G. (2003). Neuronal synchrony does not correlate with motion coherence in cortical area MT. Nature, 421(6921), 366–370. 10.1038/nature01285

    Thompson, W. H., Wright, J., Bissett, P. G., & Poldrack, R. A. (2020). Dataset decay and the problem of sequential analyses on open datasets. eLife, 9. 10.7554/eLife.53498

    Toi, P. T., Jang, H. J., Min, K., Kim, S.-P., Lee, S.-K., Lee, J., Kwag, J., & Park, J.-Y. (2022). In vivo direct imaging of neuronal activity at high temporospatial resolution. Science, 378(6616), 160–168. doi:10.1126/science.abh4340

    Tort, A. B. L., Brankačk, J., & Draguhn, A. (2018). Respiration-entrained brain rhythms are global but often overlooked. Trends Neurosci, 41(4), 186–197. 10.1016/j.tins.2018.01.007

    Tort-Colet, N., Capone, C., Sanchez-Vives, M. V., & Mattia, M. (2021). Attractor competition enriches cortical dynamics during awakening from anesthesia. Cell Rep, 35(12), 109270. 10.1016/j.celrep.2021.109270

    van Beest, E. H., Mukherjee, S., Kirchberger, L., Schnabel, U. H., van der Togt, C., Teeuwen, R. R. M., Barsegyan, A., Meyer, A. F., Poort, J., Roelfsema, P. R., & Self, M. W. (2021). Mouse visual cortex contains a region of enhanced spatial resolution. Nat Commun, 12(1), 4029. 10.1038/s41467-021-24311-5

    van den Bosch, R., Lambregts, B., Määttä, J., Hofmans, L., Papadopetraki, D., Westbrook, A., Verkes, R. J., Booij, J., & Cools, R. (2022). Striatal dopamine dissociates methylphenidate effects on value-based versus surprise-based reversal learning. Nat Commun, 13(1), 4962. 10.1038/s41467-022-32679-1

    van Vugt, B., Dagnino, B., Vartak, D., Safaai, H., Panzeri, S., Dehaene, S., & Roelfsema, P. R. (2018). The threshold for conscious report: Signal loss and response bias in visual and frontal cortex. Science, 360(6388), 537–542. 10.1126/science.aar7186

    Vezoli, J., Magrou, L., Goebel, R., Wang, X.-J., Knoblauch, K., Vinck, M., & Kennedy, H. (2021). Cortical hierarchy, dual counterstream architecture and the importance of top-down generative networks. Neuroimage, 225, 117479. 10.1016/j.neuroimage.2020.117479

    Viswanathan, A., & Freeman, R. D. (2007). Neurometabolic coupling in cerebral cortex reflects synaptic more than spiking activity. Nat Neurosci, 10(10), 1308–1312. 10.1038/nn1977

    Vogel, J. W., Young, A. L., Oxtoby, N. P., Smith, R., Ossenkoppele, R., Strandberg, O. T., La Joie, R., Aksman, L. M., Grothe, M. J., Iturria-Medina, Y., Alzheimer’s Disease Neuroimaging, I., Pontecorvo, M. J., Devous, M. D., Rabinovici, G. D., Alexander, D. C., Lyoo, C. H., Evans, A. C., & Hansson, O. (2021). Four distinct trajectories of tau deposition identified in Alzheimer’s disease. Nat Med, 27(5), 871–881. 10.1038/s41591-021-01309-6

    Vogt, C., & Vogt, O. (1919). Allgemeine ergebnisse unserer hirnforschung (Vol. 25). JA Barth.

    Vogt, M. (1954). The concentration of sympathin in different parts of the central nervous system under normal conditions and after the administration of drugs. J Physiol, 123(3), 451–481. 10.1113/jphysiol.1954.sp005064

    Wagner, A. S., Waite, L. K., Wierzba, M., Hoffstaedter, F., Waite, A. Q., Poldrack, B., Eickhoff, S. B., & Hanke, M. (2022). FAIRly big: A framework for computationally reproducible processing of large-scale data. Sci Data, 9(1), 80. 10.1038/s41597-022-01163-2

    Wang, H. E., Woodman, M., Triebkorn, P., Lemarechal, J. D., Jha, J., Dollomaja, B., Vattikonda, A. N., Sip, V., Medina Villalon, S., Hashemi, M., Guye, M., Makhalova, J., Bartolomei, F., & Jirsa, V. (2023). Delineating epileptogenic networks using brain imaging data and personalized modeling in drug-resistant epilepsy. Sci Transl Med, 15(680), eabp8982. 10.1126/scitranslmed.abp8982

    Wang, X. J. (2002). Probabilistic decision making by slow reverberation in cortical circuits. Neuron, 36(5), 955–968. 10.1016/s0896-6273(02)01092-9

    Wendling, F. (2008). Computational models of epileptic activity: A bridge between observation and pathophysiological interpretation. Expert Rev Neurother, 8(6), 889–896. 10.1586/14737175.8.6.889

    White, T., Blok, E., & Calhoun, V. D. (2022). Data sharing and privacy issues in neuroimaging research: Opportunities, obstacles, challenges, and monsters under the bed. Hum Brain Mapp, 43(1), 278–291. 10.1002/hbm.25120

    Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J. J., Appleton, G., Axton, M., Baak, A., Blomberg, N., Boiten, J.-W., da Silva Santos, L. B., Bourne, P. E., Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C. T., Finkers, R., … Mons, B. (2016). The FAIR guiding principles for scientific data management and stewardship. Sci Data, 3, 160018–160018. 10.1038/sdata.2016.18

    Yamins, D. L. K., & DiCarlo, J. J. (2016). Using goal-driven deep learning models to understand sensory cortex. Nat Neurosci, 19(3), 356–365. 10.1038/nn.4244

    Yang, G. R., & Molano-Mazón, M. (2021). Towards the next generation of recurrent network models for cognitive neuroscience. Curr Opin Neurobiol, 70, 182–192. 10.1016/j.conb.2021.10.015

    Yang, W., & Yuste, R. (2017). In vivo imaging of neural activity. Nat Methods, 14(4), 349–359. 10.1038/nmeth.4230

    Young, A. L., Marinescu, R. V., Oxtoby, N. P., Bocchetta, M., Yong, K., Firth, N. C., Cash, D. M., Thomas, D. L., Dick, K. M., Cardoso, J., van Swieten, J., Borroni, B., Galimberti, D., Masellis, M., Tartaglia, M. C., Rowe, J. B., Graff, C., Tagliavini, F., Frisoni, G. B., … Alexander, D. C. (2018). Uncovering the heterogeneity and temporal complexity of neurodegenerative diseases with subtype and stage inference. Nat Commun, 9(1), 4273. 10.1038/s41467-018-05892-0

    Yong, E. (2019). The Atlantic. science/archive/2019/07/ten-years-human-brain-project-simulation-markram-ted-talk/594493/

    Youssef, S. A., Capucchio, M. T., Rofina, J. E., Chambers, J. K., Uchida, K., Nakayama, H., & Head, E. (2016). Pathology of the aging brain in domestic and laboratory animals, and animal models of human neurodegenerative diseases. Vet Pathol, 53(2), 327–348. 10.1177/0300985815623997

    Zaborszky, L. (2021). Brain structure and function: The first 15 years—A retrospective. Brain Struct Funct, 226(8), 2467–2475. 10.1007/s00429-021-02362-0

    Zahodne, L. B., Manly, J. J., Narkhede, A., Griffith, E. Y., DeCarli, C., Schupf, N. S., Mayeux, R., & Brickman, A. M. (2015). Structural MRI predictors of late-life cognition differ across African Americans, Hispanics, and Whites. Curr Alzheimer Res, 12(7), 632–639. 10.2174/1567205012666150530203214

    Zhuang, C., Yan, S., Nayebi, A., Schrimpf, M., Frank, M. C., DiCarlo, J. J., & Yamins, D. L. K. (2021). Unsupervised neural network models of the ventral visual stream. Proc Natl Acad Sci U S A, 118(3). 10.1073/pnas.2014196118

    Zilles, K., & Amunts, K. (2013). Individual variability is not noise. Trends Cogn Sci, 17(4), 153–155. 10.1016/j.tics.2013.02.003

    发布于:好意思国

    上一篇:91porn邀请码 雷军回复董明珠质疑:小米空调第四,情势拉满
    下一篇:91porn邀请码 雷阵雨+短时大风+冰雹!北京两区发布雷电预警